RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2007, Volume 151, Number 1, Pages 3–25 (Mi tmf6008)  

This article is cited in 4 scientific papers (total in 4 papers)

Gravitational Yang–Lee model: Four-point function

Al. B. Zamolodchikovab

a Institute for Theoretical and Experimental Physics
b Laboratoire de Physique Mathématique et Astroparticules, Laboratoire Associé au CNRS UMR 5825, Université Montpellier II, Montpellier, France; Service de Physique Théorique CNRS – URA 2306, C.E.A. – Saclay, Gif-sur-Yvette, France

Abstract: We find the four-point perturbative contribution to the spherical partition function of the gravitational Yang–Lee model numerically. We propose an effective integration procedure based on a convenient elliptic parameterization of the moduli space. At certain values of the "spectator" parameter, the Liouville four-point function involves several "discrete terms," which should be taken into account separately. We also consider the classical limit, where only the discrete terms survive. In addition, we propose an explicit expression for the spherical partition function at the "second explicitly solvable point," where the spectator matter is yet another $\mathcal{M}_{2/5}$ (Yang–Lee) minimal model.

Keywords: quantum gravity, Liouville theory, conformal field theory

DOI: https://doi.org/10.4213/tmf6008

Full text: PDF file (600 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 151:1, 439–458

Bibliographic databases:

Received: 14.08.2006

Citation: Al. B. Zamolodchikov, “Gravitational Yang–Lee model: Four-point function”, TMF, 151:1 (2007), 3–25; Theoret. and Math. Phys., 151:1 (2007), 439–458

Citation in format AMSBIB
\Bibitem{Zam07}
\by Al.~B.~Zamolodchikov
\paper Gravitational Yang--Lee model: Four-point function
\jour TMF
\yr 2007
\vol 151
\issue 1
\pages 3--25
\mathnet{http://mi.mathnet.ru/tmf6008}
\crossref{https://doi.org/10.4213/tmf6008}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2347299}
\zmath{https://zbmath.org/?q=an:1117.83328}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..439Z}
\elib{http://elibrary.ru/item.asp?id=9521568}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 1
\pages 439--458
\crossref{https://doi.org/10.1007/s11232-007-0033-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000245809000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247271907}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6008
  • https://doi.org/10.4213/tmf6008
  • http://mi.mathnet.ru/eng/tmf/v151/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fateev V.A., Litvinov A.V., Neveu A., Onofri E., “A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks”, J. Phys. A, 42:30 (2009), 304011, 29 pp.  crossref  mathscinet  zmath  isi  scopus
    2. Belavin V., “Correlation Functions in Unitary Minimal Liouville Gravity and Frobenius Manifolds”, J. High Energy Phys., 2015, no. 2, 052  crossref  mathscinet  isi  scopus
    3. Aleshkin K. Belavin V., “On the construction of the correlation numbers in Minimal Liouville Gravity”, J. High Energy Phys., 2016, no. 11, 142  crossref  mathscinet  zmath  isi  elib  scopus
    4. He S., “Conformal Bootstrap to Renyi Entropy in 2D Liouville and Super-Liouville Cfts”, Phys. Rev. D, 99:2 (2019), 026005  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:319
    Full text:102
    References:63
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019