General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2007, Volume 151, Number 1, Pages 44–53 (Mi tmf6010)  

This article is cited in 7 scientific papers (total in 7 papers)

Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background

M. Sanigaa, M. Planatb

a Astronomical Institute, Slovak Academy of Sciences
b CNRS — Institut FEMTO-ST, Département LPMO

Abstract: We consider the projective line over the finite quotient ring $R_{\diamondsuit}\equiv{GF}(2)[x]/\langle x^3-x\rangle$. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because $R_{\diamondsuit}$ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical $\mathcal J_{\diamondsuit}$ of the ring. The quotient ring $\widetilde R_{\diamondsuit} \equiv R_{\diamondsuit}/\mathcal J_{\diamondsuit}$ is isomorphic to ${GF}(2)\otimes{GF}(2)$. The projective line over $\widetilde R_{\diamondsuit}$ features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.

Keywords: projective ring line, finite quotient ring, neighbor/distant relation, quantum entanglement


Full text: PDF file (413 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 151:1, 474–481

Bibliographic databases:

Received: 21.07.2006

Citation: M. Saniga, M. Planat, “Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background”, TMF, 151:1 (2007), 44–53; Theoret. and Math. Phys., 151:1 (2007), 474–481

Citation in format AMSBIB
\by M.~Saniga, M.~Planat
\paper Projective line over the~finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background
\jour TMF
\yr 2007
\vol 151
\issue 1
\pages 44--53
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 1
\pages 474--481

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Michel Planat, Metod Saniga, Maurice R. Kibler, “Quantum Entanglement and Projective Ring Geometry”, SIGMA, 2 (2006), 066, 14 pp.  mathnet  crossref  mathscinet  zmath
    2. M. Saniga, M. Planat, M. Minarovjech, “Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: The Mermin “magic” square/pentagram”, Theoret. and Math. Phys., 151:2 (2007), 625–631  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Havlicek, H, “Projective ring line of a specific qudit”, Journal of Physics A-Mathematical and Theoretical, 40:43 (2007), F943  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. M. Saniga, M. Planat, P. Pracna, “Projective ring line encompassing two-qubits”, Theoret. and Math. Phys., 155:3 (2008), 905–913  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Planat M, Saniga M, “On the Pauli graphs on N-qudits”, Quantum Information & Computation, 8:1–2 (2008), 127–146  mathscinet  zmath  adsnasa  isi
    6. Hans Havlicek, Boris Odehnal, Metod Saniga, “Factor-Group-Generated Polar Spaces and (Multi-)Qudits”, SIGMA, 5 (2009), 096, 15 pp.  mathnet  crossref  mathscinet
    7. Green R.M. Saniga M., “The Veldkamp Space of the Smallest Slim Dense Near Hexagon”, Int. J. Geom. Methods Mod. Phys., 10:2 (2013), 1250082  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:393
    Full text:109
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020