RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 123, Number 2, Pages 299–307 (Mi tmf604)  

This article is cited in 3 scientific papers (total in 3 papers)

The duality of quantum Liouville field theory

L. O'Raifeartaigh, J. M. Pawlowski, V. V. Sreedhar

Dublin Institute for Advanced Studies

Abstract: It has been found empirically that the Virasoro center and three-point functions of quantum Liouville field theory with the potential $\exp(2b\phi(x))$ and the external primary fields $\exp(\alpha\phi(x))$ are invariant with respect to the duality transformations $\hbar\alpha\rightarrow q-\alpha$, where $q=b^{-1}+b$. The steps leading to this result (via the Virasoro algebra and three-point functions) are reviewed in the path-integral formalism. The duality occurs because the quantum relationship between the $\alpha$ and the conformal weights $\Delta_\alpha$ is two-to-one. As a result, the quantum Liouville potential can actually contain two exponentials (with related parameters). In the two-exponential theory, the duality appears naturally, and an important previously conjectured extrapolation can be proved.

DOI: https://doi.org/10.4213/tmf604

Full text: PDF file (209 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 123:2, 663–670

Bibliographic databases:


Citation: L. O'Raifeartaigh, J. M. Pawlowski, V. V. Sreedhar, “The duality of quantum Liouville field theory”, TMF, 123:2 (2000), 299–307; Theoret. and Math. Phys., 123:2 (2000), 663–670

Citation in format AMSBIB
\Bibitem{OraPawSre00}
\by L.~O'Raifeartaigh, J.~M.~Pawlowski, V.~V.~Sreedhar
\paper The duality of quantum Liouville field theory
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 299--307
\mathnet{http://mi.mathnet.ru/tmf604}
\crossref{https://doi.org/10.4213/tmf604}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1794162}
\zmath{https://zbmath.org/?q=an:1031.81632}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 663--670
\crossref{https://doi.org/10.1007/BF02551399}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000165897000010}


Linking options:
  • http://mi.mathnet.ru/eng/tmf604
  • https://doi.org/10.4213/tmf604
  • http://mi.mathnet.ru/eng/tmf/v123/i2/p299

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Blaszak M., “From bi-Hamiltonian geometry to separation of variables: Stationary Harry-Dym and the KdV dressing chain”, Journal of Nonlinear Mathematical Physics, 9 (2002), 1–13, Suppl. 1  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    2. Blaszak, M, “Separability preserving Dirac reductions of Poisson pencils on Riemannian manifolds”, Journal of Physics A-Mathematical and General, 36:5 (2003), 1337  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. Giribet G.E., Lopez-Fogliani D.E., “Remarks on free field realization of SL(2, R)(k)/U(1) x U(1) WZNW model”, Journal of High Energy Physics, 2004, no. 6, 026  crossref  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:198
    Full text:95
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020