RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2007, Volume 151, Number 3, Pages 518–528 (Mi tmf6064)  

This article is cited in 6 scientific papers (total in 6 papers)

An infinite set of conservation laws for infinite symmetries

V. Rosenhaus

California State University, Chico

Abstract: We consider partial differential equations of a variational problem admitting infinite-dimensional Lie symmetry algebras parameterized by arbitrary functions of dependent variables and their derivatives. We show that unlike differential systems with symmetry algebras parameterized by arbitrary functions of independent variables, these equations have infinite sets of essential conservation laws.

Keywords: infinite symmetries, conservation law

DOI: https://doi.org/10.4213/tmf6064

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 151:3, 869–878

Bibliographic databases:


Citation: V. Rosenhaus, “An infinite set of conservation laws for infinite symmetries”, TMF, 151:3 (2007), 518–528; Theoret. and Math. Phys., 151:3 (2007), 869–878

Citation in format AMSBIB
\Bibitem{Ros07}
\by V.~Rosenhaus
\paper An~infinite set of conservation laws for infinite symmetries
\jour TMF
\yr 2007
\vol 151
\issue 3
\pages 518--528
\mathnet{http://mi.mathnet.ru/tmf6064}
\crossref{https://doi.org/10.4213/tmf6064}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2406039}
\zmath{https://zbmath.org/?q=an:1142.37040}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..869R}
\elib{http://elibrary.ru/item.asp?id=9521605}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 3
\pages 869--878
\crossref{https://doi.org/10.1007/s11232-007-0072-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000247980300016}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347213446}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6064
  • https://doi.org/10.4213/tmf6064
  • http://mi.mathnet.ru/eng/tmf/v151/i3/p518

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Khovanov, M, “Matrix factorizations and link homology”, Fundamenta Mathematicae, 199:1 (2008), 1  crossref  mathscinet  zmath  isi  scopus
    2. V. Rosenhaus, “Infinite conservation laws for differential systems”, Theoret. and Math. Phys., 160:1 (2009), 1042–1049  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Rosenhaus V., Bruzon M.S., Gandarias M.L., “Boundary Conditions for Infinite Conservation Laws”, Rep. Math. Phys., 78:3 (2016), 345–370  crossref  mathscinet  zmath  isi  scopus
    4. Rosenhaus V. Shankar R., “Second Noether theorem for quasi-Noether systems”, J. Phys. A-Math. Theor., 49:17 (2016), 175205  crossref  mathscinet  zmath  isi  scopus
    5. V. Rosenhaus, R. Shankar, “Subsymmetries and their properties”, Theoret. and Math. Phys., 197:1 (2018), 1514–1526  mathnet  crossref  crossref  adsnasa  isi  elib
    6. Rosenhaus V. Shankar R., “Sub-Symmetries and Conservation Laws”, Rep. Math. Phys., 83:1 (2019), 21–48  crossref  mathscinet  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:264
    Full text:113
    References:64
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019