RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 123, Number 3, Pages 355–373 (Mi tmf609)  

This article is cited in 5 scientific papers (total in 5 papers)

Test function space for Wick power series

A. G. Smirnov, M. A. Soloviev

P. N. Lebedev Physical Institute, Russian Academy of Sciences

Abstract: We derive a criterion that is convenient for applications and exactly characterizes the test function space on which the operator realization of a given series of Wick powers of a free field is possible. The suggested derivation does not use the assumption that the metric of the state space is positive and can therefore be used in a gauge theory. It is based on the systematic use of the analytic properties of the Hilbert majorant of the indefinite metric and on the application of a suitable theorem on the unconditional convergence of series of boundary values of analytic functions.

DOI: https://doi.org/10.4213/tmf609

Full text: PDF file (329 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 123:3, 709–725

Bibliographic databases:

Received: 06.12.1999

Citation: A. G. Smirnov, M. A. Soloviev, “Test function space for Wick power series”, TMF, 123:3 (2000), 355–373; Theoret. and Math. Phys., 123:3 (2000), 709–725

Citation in format AMSBIB
\Bibitem{SmiSol00}
\by A.~G.~Smirnov, M.~A.~Soloviev
\paper Test function space for Wick power series
\jour TMF
\yr 2000
\vol 123
\issue 3
\pages 355--373
\mathnet{http://mi.mathnet.ru/tmf609}
\crossref{https://doi.org/10.4213/tmf609}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1794006}
\zmath{https://zbmath.org/?q=an:1032.81531}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 3
\pages 709--725
\crossref{https://doi.org/10.1007/BF02551027}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088926700001}


Linking options:
  • http://mi.mathnet.ru/eng/tmf609
  • https://doi.org/10.4213/tmf609
  • http://mi.mathnet.ru/eng/tmf/v123/i3/p355

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Smirnov, M. A. Soloviev, “Spectral properties of Wick power series for a free field with an indefinite metric”, Theoret. and Math. Phys., 125:1 (2000), 1349–1362  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. G. Smirnov, M. A. Soloviev, “Wick Power Series Converging to Nonlocal Fields”, Theoret. and Math. Phys., 127:2 (2001), 632–645  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. M. A. Soloviev, “Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals”, Theoret. and Math. Phys., 128:3 (2001), 1252–1270  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Smirnov, AG, “Towards Euclidean theory of infrared singular quantum fields”, Journal of Mathematical Physics, 44:5 (2003), 2058  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. S. S. Horuzhy, “Rigorous Formulation of a $2D$ Conformal Model in the Fock–Krein Space: Construction of the Global $\operatorname{Op}J^*$-Algebra of Fields and Currents”, Theoret. and Math. Phys., 141:1 (2004), 1381–1397  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:272
    Full text:97
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020