RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2007, Volume 152, Number 2, Pages 368–376 (Mi tmf6093)  

This article is cited in 5 scientific papers (total in 5 papers)

Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds

O. I. Mokhovab

a M. V. Lomonosov Moscow State University
b Landau Institute for Theoretical Physics, Centre for Non-linear Studies

Abstract: We prove that the associativity equations of two-dimensional topological quantum field theories are very natural reductions of the fundamental nonlinear equations of the theory of submanifolds in pseudo-Euclidean spaces and give a natural class of flat torsionless potential submanifolds. We show that all flat torsionless potential submanifolds in pseudo-Euclidean spaces bear natural structures of Frobenius algebras on their tangent spaces. These Frobenius structures are generated by the corresponding flat first fundamental form and the set of the second fundamental forms of the submanifolds (in fact, the structural constants are given by the set of the Weingarten operators of the submanifolds). We prove that each $N$-dimensional Frobenius manifold can be locally represented as a flat torsionless potential submanifold in a $2N$-dimensional pseudo-Euclidean space. By our construction, this submanifold is uniquely determined up to motions. Moreover, we consider a nonlinear system that is a natural generalization of the associativity equations, namely, the system describing all flat torsionless submanifolds in pseudo-Euclidean spaces, and prove that this system is integrable by the inverse scattering method.

Keywords: Frobenius manifold, submanifold in a pseudo-Euclidean space, flat submanifold, submanifold with flat normal bundle, flat submanifold with zero torsion, associativity equation in two-dimensional topological quantum field theory, integrable system

DOI: https://doi.org/10.4213/tmf6093

Full text: PDF file (393 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 152:2, 1183–1190

Bibliographic databases:


Citation: O. I. Mokhov, “Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds”, TMF, 152:2 (2007), 368–376; Theoret. and Math. Phys., 152:2 (2007), 1183–1190

Citation in format AMSBIB
\Bibitem{Mok07}
\by O.~I.~Mokhov
\paper Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds
\jour TMF
\yr 2007
\vol 152
\issue 2
\pages 368--376
\mathnet{http://mi.mathnet.ru/tmf6093}
\crossref{https://doi.org/10.4213/tmf6093}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2429286}
\zmath{https://zbmath.org/?q=an:1134.81405}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1183M}
\elib{http://elibrary.ru/item.asp?id=9541941}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 2
\pages 1183--1190
\crossref{https://doi.org/10.1007/s11232-007-0101-5}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000249211500013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548457326}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6093
  • https://doi.org/10.4213/tmf6093
  • http://mi.mathnet.ru/eng/tmf/v152/i2/p368

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, “Duality in a special class of submanifolds and Frobenius manifolds”, Russian Math. Surveys, 63:2 (2008), 378–380  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Konopelchenko B.G., “Quantum deformations of associative algebras and integrable systems”, J. Phys. A, 42:9 (2009), 095201, 18 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. O. I. Mokhov, “Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces”, Proc. Steklov Inst. Math., 267 (2009), 217–234  mathnet  crossref  mathscinet  zmath  isi  elib
    4. Sergyeyev A., “Infinite hierarchies of nonlocal symmetries of the Chen-Kontsevich-Schwarz type for the oriented associativity equations”, J. Phys. A, 42:40 (2009), 404017, 15 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    5. Prykarpatski A.K., “On the Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde Associativity Equations and Their Algebraic Properties”, J. Geom. Phys., 134 (2018), 77–83  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:520
    Full text:177
    References:40
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019