RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2007, Volume 152, Number 3, Pages 457–465 (Mi tmf6102)  

This article is cited in 4 scientific papers (total in 4 papers)

Phases of the Goldstone multitrace matrix model in the large-$N$ limit

A. O. Shishanin

Moscow State Industrial University

Abstract: We consider the Goldstone Hermitian matrix model with a multitrace term. When defining the solution on two intervals, we introduce a special parameter $\xi$ describing the phase. We discuss the phase existence conditions at $\xi=0$ (or $1$) and at $\xi=1/2$. We calculate the propagator and the vacuum energy in the symmetric case $\xi=1/2$. In the general case, we discuss the solution structure and calculate the magnetization and other parameters expressed in terms of the sum of all the intervals.

Keywords: planar approximation, Hermitian matrix model, multitrace term, multicut solution

DOI: https://doi.org/10.4213/tmf6102

Full text: PDF file (367 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 152:3, 1258–1265

Bibliographic databases:

Received: 16.10.2006
Revised: 26.01.2007

Citation: A. O. Shishanin, “Phases of the Goldstone multitrace matrix model in the large-$N$ limit”, TMF, 152:3 (2007), 457–465; Theoret. and Math. Phys., 152:3 (2007), 1258–1265

Citation in format AMSBIB
\Bibitem{Shi07}
\by A.~O.~Shishanin
\paper Phases of the~Goldstone multitrace matrix model in the~large-$N$ limit
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 457--465
\mathnet{http://mi.mathnet.ru/tmf6102}
\crossref{https://doi.org/10.4213/tmf6102}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2402245}
\zmath{https://zbmath.org/?q=an:1134.81401}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1258S}
\elib{http://elibrary.ru/item.asp?id=9918135}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1258--1265
\crossref{https://doi.org/10.1007/s11232-007-0110-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000249733400004}
\elib{http://elibrary.ru/item.asp?id=13557696}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748887156}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6102
  • https://doi.org/10.4213/tmf6102
  • http://mi.mathnet.ru/eng/tmf/v152/i3/p457

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Christian Sämann, “The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$”, SIGMA, 6 (2010), 050, 23 pp.  mathnet  crossref  mathscinet
    2. Tekel J., “Matrix Model Approximations of Fuzzy Scalar Field Theories and Their Phase Diagram”, J. High Energy Phys., 2015, no. 12, 176  crossref  mathscinet  zmath  isi  scopus
    3. Rea S., Saemann Ch., “the Phase Diagram of Scalar Field Theory on the Fuzzy Disc”, J. High Energy Phys., 2015, no. 11, 115  crossref  mathscinet  zmath  isi  elib  scopus
    4. Tekel J., “Phase Structure of Fuzzy Field Theories and Multitrace Matrix Models”, Acta Phys. Slovaca, 65:5 (2015), 369–469  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:216
    Full text:71
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019