RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2007, Volume 153, Number 1, Pages 98–123 (Mi tmf6124)  

This article is cited in 1 scientific paper (total in 1 paper)

Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem

A. G. Basuev

St. Petersburg State University of Technology and Design

Abstract: We generalize the Pirogov–Sinai theory and prove the results applicable to first-order phase transitions in the case of both bulk and surface phase lattice models. The region of first-order phase transitions is extended with respect to the chemical activities to the entire complex space $\mathbb C^\Phi$, where $\Phi$ is the set of phases in the model. We prove a generalization of the Lee–Yang theorem: as functions of the activities, the partition functions with a stable boundary condition have no zeros in $\mathbb C^\Phi$.

Keywords: Pirogov–Sinai theory, multiphase contour model, interphase Hamiltonian, cluster expansion of the interphase Hamiltonian, contour equations, equation of state, phase diagram, fc-invariance of multiphase contour models

DOI: https://doi.org/10.4213/tmf6124

Full text: PDF file (669 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2007, 153:1, 1434–1457

Bibliographic databases:

Received: 29.09.2006
Revised: 20.03.2007

Citation: A. G. Basuev, “Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem”, TMF, 153:1 (2007), 98–123; Theoret. and Math. Phys., 153:1 (2007), 1434–1457

Citation in format AMSBIB
\Bibitem{Bas07}
\by A.~G.~Basuev
\paper Interphase Hamiltonian and first-order phase transitions: A~generalization of the~Lee--Yang theorem
\jour TMF
\yr 2007
\vol 153
\issue 1
\pages 98--123
\mathnet{http://mi.mathnet.ru/tmf6124}
\crossref{https://doi.org/10.4213/tmf6124}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2402239}
\zmath{https://zbmath.org/?q=an:1157.82319}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...153.1434B}
\elib{http://elibrary.ru/item.asp?id=9918151}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 153
\issue 1
\pages 1434--1457
\crossref{https://doi.org/10.1007/s11232-007-0126-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250783100008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35448990892}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6124
  • https://doi.org/10.4213/tmf6124
  • http://mi.mathnet.ru/eng/tmf/v153/i1/p98

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Basuev, “Ising model in half-space: A series of phase transitions in low magnetic fields”, Theoret. and Math. Phys., 153:2 (2007), 1539–1574  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:782
    Full text:116
    References:57
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019