RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 123, Number 3, Pages 433–451 (Mi tmf614)  

This article is cited in 8 scientific papers (total in 8 papers)

Perturbation theory in the neighborhood of extended objects

I. D. Mandzhavidzeab, A. N. Sisakyanb

a Institute of Physics, Georgian Academy of Sciences
b Joint Institute for Nuclear Research

Abstract: Using a unitary mapping to the “action–angle” variables, we formulate the perturbation theory with respect to the inverse coupling constant in the neighborhood of a nontrivial critical point of the action. We also describe the standard perturbation theory in this neighborhood.

DOI: https://doi.org/10.4213/tmf614

Full text: PDF file (277 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 123:3, 776–791

Bibliographic databases:

Received: 09.06.1999
Revised: 09.02.2000

Citation: I. D. Mandzhavidze, A. N. Sisakyan, “Perturbation theory in the neighborhood of extended objects”, TMF, 123:3 (2000), 433–451; Theoret. and Math. Phys., 123:3 (2000), 776–791

Citation in format AMSBIB
\Bibitem{ManSis00}
\by I.~D.~Mandzhavidze, A.~N.~Sisakyan
\paper Perturbation theory in the neighborhood of extended objects
\jour TMF
\yr 2000
\vol 123
\issue 3
\pages 433--451
\mathnet{http://mi.mathnet.ru/tmf614}
\crossref{https://doi.org/10.4213/tmf614}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1794011}
\zmath{https://zbmath.org/?q=an:1066.81539}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 3
\pages 776--791
\crossref{https://doi.org/10.1007/BF02551032}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088926700006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf614
  • https://doi.org/10.4213/tmf614
  • http://mi.mathnet.ru/eng/tmf/v123/i3/p433

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Baldin, AM, “Selected problems of relativistic nuclear physics and multiple particle production”, Physics of Particles and Nuclei, 32 (2001), S4  isi
    2. Manjavidze, JD, “Physics of processes with very high multiplicity”, Physics of Particles and Nuclei, 32 (2001), S57  isi
    3. Manjavidze, J, “Yang-Mills field quantization in the factor space”, Journal of Mathematical Physics, 42:9 (2001), 4158  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Manjavidze, J, “Very high multiplicity hadron processes”, Physics Reports-Review Section of Physics Letters, 346:1 (2001), 2  crossref  isi  scopus  scopus  scopus
    5. Manjavidze, J, “Quantization of solitons in coset space”, Journal of Mathematical Physics, 42:2 (2001), 641  crossref  mathscinet  zmath  adsnasa  isi
    6. I. D. Mandzhavidze, A. N. Sisakyan, “A Field Theory Description of Constrained Energy-Dissipation Processes”, Theoret. and Math. Phys., 130:2 (2002), 153–197  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Manjavidze J., Sissakian A., “Statistical models and thermalization”, Ichep 2002, Proceedings, 2003, 381–384  isi
    8. Sissakian, AN, “On the status of very high multiplicity physics”, Physics of Atomic Nuclei, 67:1 (2004), 2  crossref  adsnasa  isi  scopus  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:436
    Full text:102
    References:47
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020