RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2008, Volume 154, Number 3, Pages 536–556 (Mi tmf6185)  

This article is cited in 16 scientific papers (total in 16 papers)

Multipoint correlation functions in Liouville field theory and minimal Liouville gravity

V. A. Fateevab, A. V. Litvinova

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Universite Montpellier II

Abstract: We study $(n+3)$-point correlation functions of exponential fields in the Liouville field theory with $n$ degenerate and three arbitrary fields and derive an analytic expression for these correlation functions in terms of Coulomb integrals. We consider the application of these results to the minimal Liouville gravity.

Keywords: conformal field theory, integrable model, Liouville theory, noncritical string theory

DOI: https://doi.org/10.4213/tmf6185

Full text: PDF file (546 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2008, 154:3, 454–472

Bibliographic databases:


Citation: V. A. Fateev, A. V. Litvinov, “Multipoint correlation functions in Liouville field theory and minimal Liouville gravity”, TMF, 154:3 (2008), 536–556; Theoret. and Math. Phys., 154:3 (2008), 454–472

Citation in format AMSBIB
\Bibitem{FatLit08}
\by V.~A.~Fateev, A.~V.~Litvinov
\paper Multipoint correlation functions in Liouville field theory and minimal
Liouville gravity
\jour TMF
\yr 2008
\vol 154
\issue 3
\pages 536--556
\mathnet{http://mi.mathnet.ru/tmf6185}
\crossref{https://doi.org/10.4213/tmf6185}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2431561}
\zmath{https://zbmath.org/?q=an:1192.81297}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..454F}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 3
\pages 454--472
\crossref{https://doi.org/10.1007/s11232-008-0038-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000254207700008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41049116137}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6185
  • https://doi.org/10.4213/tmf6185
  • http://mi.mathnet.ru/eng/tmf/v154/i3/p536

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fateeva V.A., Litvinov A.V., “Correlation functions in conformal Toda field theory. II”, J. High Energy Phys., 2009, no. 1, 033, 26 pp.  crossref  mathscinet  isi  scopus
    2. Wyllard N., “$A_{N-1}$ conformal Toda field theory correlation functions from conformal $N=2$ SU(N) quiver gauge theories”, J. High Energy Phys., 2009, no. 11, 002, 22 pp.  crossref  mathscinet  isi  elib  scopus
    3. Fateev V.A., Litvinov A.V., Neveu A., Onofri E., “A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks”, J. Phys. A, 42:30 (2009), 304011, 29 pp.  crossref  mathscinet  zmath  isi  scopus
    4. Giribet G., “On AGT description of $\mathcal N=2$ SCFT with $N_f=4$”, J. High Energy Phys., 2010, no. 1, 097, 18 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    5. Menotti P., “Riemann–Hilbert treatment of Liouville theory on the torus”, J. Phys. A, 44:11 (2011), 115403, 21 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolskiy G.M., “On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture”, Lett Math Phys, 98:1 (2011), 33–64  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Bershtein M.A., Fateev V.A., Litvinov A.V., “Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory”, Nuclear Phys B, 847:2 (2011), 413–459  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. Kashani-Poor A.-K., Troost J., “Transformations of Spherical Blocks”, J. High Energy Phys., 2013, no. 10, 009  crossref  mathscinet  zmath  isi  scopus
    9. Kashani-Poor A.-K., Troost J., “Quantum Geometry From the Toroidal Block”, J. High Energy Phys., 2014, no. 8, 117  crossref  mathscinet  zmath  isi  scopus
    10. Furlan P., Petkova V.B., “on Some 3-Point Functions in the W-4 CFT and Related Braiding Matrix”, J. High Energy Phys., 2015, no. 12, 079, 1–23  crossref  mathscinet  isi  scopus
    11. Litvinov A., Spodyneiko L., “On W algebras commuting with a set of screenings”, J. High Energy Phys., 2016, no. 11, 138  crossref  mathscinet  zmath  isi  elib  scopus
    12. Giribet G., “Stringy horizons and generalized FZZ duality in perturbation theory”, J. High Energy Phys., 2017, no. 2, 069  crossref  mathscinet  isi  scopus
    13. Furlan P. Petkova V.B., “W-4 Toda Example as Hidden Liouville CFT”, Phys. Part. Nuclei Lett., 14:2 (2017), 286–290  crossref  isi  scopus
    14. Kupiainen A., Rhodes R., Vargas V., “The Dozz Formula From the Path Integral”, J. High Energy Phys., 2018, no. 5, 094  crossref  isi  scopus
    15. Fateev V.A., Litvinov A.V., “Integrability, Duality and SIGMA Models”, J. High Energy Phys., 2018, no. 11, 204  crossref  mathscinet  zmath  isi  scopus
    16. Litvinov A.V., Spodyneiko L.A., “On Dual Description of the Deformed O(N) SIGMA Model”, J. High Energy Phys., 2018, no. 11, 139  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:379
    Full text:119
    References:47
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020