|
This article is cited in 34 scientific papers (total in 34 papers)
The null energy condition and cosmology
I. Ya. Aref'eva, I. V. Volovich Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Field theories that violate the null energy condition {(}NEC{\rm)} are
of interest both for the solution of the cosmological singularity problem and
for models of cosmological dark energy with the equation of state parameter
$w<-1$. We consider two recently proposed models that violate the NEC.
The ghost condensate model requires higher-derivative terms in the action,
and this leads to a heavy ghost field and energy unbounded from below. We
estimate the rates of particle decay and discuss possible mass limitations to
protect the stability of matter in the ghost condensate model. The nonlocal
stringy model that arises from a cubic string field theory and exhibits
a phantom behavior also leads to energy unbounded from below. In this case,
the energy spectrum is continuous, and there are no particle-like excitations.
This model admits a natural UV completion because it comes from superstring
theory.
Keywords:
cosmology, string, D-brane
DOI:
https://doi.org/10.4213/tmf6188
Full text:
PDF file (461 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2008, 155:1, 503–511
Bibliographic databases:
Document Type:
Article
Citation:
I. Ya. Aref'eva, I. V. Volovich, “The null energy condition and cosmology”, TMF, 155:1 (2008), 3–12; Theoret. and Math. Phys., 155:1 (2008), 503–511
Citation in format AMSBIB
\Bibitem{AreVol08}
\by I.~Ya.~Aref'eva, I.~V.~Volovich
\paper The null energy condition and cosmology
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 3--12
\mathnet{http://mi.mathnet.ru/tmf6188}
\crossref{https://doi.org/10.4213/tmf6188}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2466475}
\zmath{https://zbmath.org/?q=an:1159.83368}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..503A}
\elib{http://elibrary.ru/item.asp?id=11629828}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 503--511
\crossref{https://doi.org/10.1007/s11232-008-0041-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255258900001}
\elib{http://elibrary.ru/item.asp?id=13592580}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449116677}
Linking options:
http://mi.mathnet.ru/eng/tmf6188https://doi.org/10.4213/tmf6188 http://mi.mathnet.ru/eng/tmf/v155/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Aref'eva I.Ya., Volovich I.V., “Quantization of the Riemann zeta-function and cosmology”, Int. J. Geom. Methods Mod. Phys., 4:5 (2007), 881–895
-
B. G. Dragovich, “Zeta-nonlocal scalar fields”, Theoret. and Math. Phys., 157:3 (2008), 1671–1677
-
Aref'eva I.Ya., Koshelev A.S., “Cosmological signature of tachyon condensation”, J. High Energy Phys., 2008, no. 9, 068, 20 pp.
-
Barnaby N., Kamran N., “Dynamics with infinitely many derivatives: variable coefficient equations”, J. High Energy Phys., 2008, no. 12, 022, 27 pp.
-
Mulryne D.J., Nunes N.J., “Diffusing nonlocal inflation: Solving the field equations as an initial value problem”, Phys. Rev. D, 78:6 (2008), 063519, 16 pp.
-
Aref'eva I.Ya., Volovich I.V., “Time machine at the LHC”, Int. J. Geom. Methods Mod. Phys., 5:4 (2008), 641–651
-
Barnaby N., Mulryne D.J., Nunes N.J., Robinson P., “Dynamics and stability of light-like tachyon condensation”, J. High Energy Phys., 2009, no. 3, 018, 28 pp.
-
I. V. Volovich, O. V. Groshev, N. A. Gusev, E. A. Kuryanovich, “On Solutions to the Wave Equation on a Non-globally Hyperbolic Manifold”, Proc. Steklov Inst. Math., 265 (2009), 262–275
-
Aref'eva I.Ya., Bulatov N.V., Joukovskaya L.V., Vernov S.Yu., “Null energy condition violation and classical stability in the Bianchi I metric”, Phys. Rev. D, 80:8 (2009), 083532, 13 pp.
-
Volovich I.V., “Time in Physics and Life Science”, Quantum Bio-Informatics II: From Quantum Information To Bio-Informatics, Qp-Pq Quantum Probability and White Noise Analysis, 24, 2009, 205–215
-
Vernov S.Yu., “Localization of nonlocal cosmological models with quadratic potentials in the case of double roots”, Classical Quantum Gravity, 27:3 (2010), 035006, 16 pp.
-
Kahya E.O., Onemli V.K., Woodard R.P., “Completely regular quantum stress tensor with $w<-1$”, Phys. Rev. D, 81:2 (2010), 023508, 10 pp.
-
I. Ya. Aref'eva, N. V. Bulatov, S. Yu. Vernov, “Stable exact solutions in cosmological models with two scalar fields”, Theoret. and Math. Phys., 163:3 (2010), 788–803
-
Calcagni G., Nardelli G., “Nonlocal gravity and the diffusion equation”, Phys. Rev. D, 82:12 (2010), 123518, 17 pp.
-
Calcagni G., Nardelli G., “Cosmological rolling solutions of nonlocal theories”, Internat. J. Modern Phys. D, 19:3 (2010), 329–338
-
Vernov S.Yu., “Solutions of nonlocal cosmological equations”, XXIX Workshop on Geometric Methods in Physics, AIP Conference Proceedings, 1307, 2010, 185–190
-
S. Yu. Vernov, “Exact solutions of nonlocal nonlinear field equations in cosmology”, Theoret. and Math. Phys., 166:3 (2011), 392–402
-
Koshelev A.S., Vernov S.Yu., “Analysis of scalar perturbations in cosmological models with a non-local scalar field”, Classical Quantum Gravity, 28:8 (2011), 085019
-
Easson D.A., Sawicki I., Vikman A., “G-bounce”, J Cosmol Astropart Phys, 2011, no. 11, 021
-
Aref'eva I.Ya., Volovich I.V., “Cosmological daemon”, Journal of High Energy Physics, 2011, no. 8, 102
-
Aref'eva I., “Puzzles with Tachyon in SSFT and Cosmological Applications”, Progr Theoret Phys Suppl, 2011, no. 188, 29–40
-
I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, “Friedmann cosmology with nonpositive-definite Higgs potentials”, Theoret. and Math. Phys., 173:1 (2012), 1466–1480
-
Novosyadlyj B., Sergijenko O., Durrer R., Pelykh V., “Do the Cosmological Observational Data Prefer Phantom Dark Energy?”, Phys. Rev. D, 86:8 (2012), 083008
-
Koshelev A.S. Vernov S.Yu., “Cosmological Perturbations in Sft Inspired Non-Local Scalar Field Models”, Eur. Phys. J. C, 72:10 (2012), 2198
-
Chen T.-j., Fasiello M., Lim E.A., Tolley A.J., “Higher Derivative Theories with Constraints: Exorcising Ostrogradski's Ghost”, J. Cosmol. Astropart. Phys., 2013, no. 2, 042
-
Calcagni G., Modesto L., Nicolini P., “Super-Accelerating Bouncing Cosmology in Asymptotically Free Non-Local Gravity”, Eur. Phys. J. C, 74:8 (2014), 2999
-
Aref'eva I.Ya. Bulatov N.V. Gorbachev R.V. Vernov S.Yu., “Non-Minimally Coupled Cosmological Models With the Higgs-Like Potentials and Negative Cosmological Constant”, Class. Quantum Gravity, 31:6 (2014), 065007
-
Boko R.D., Rodrigues M.E., Houndjo M.J.S., Orou J.B.Ch., Myrzakulov R., “Isotropic Turbulence in the Dark Fluid Universe With Inhomogeneous Equation of State”, Astrophys. Space Sci., 358:1 (2015), 15
-
Arefeva I., Bagrov A., Saterskog P., Schalm K., “Holographic dual of a time machine”, Phys. Rev. D, 94:4 (2016), 044059
-
M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668
-
Calcagni G., “Cosmology of Quantum Gravities”: G. Calcagni, Classical and Quantum Cosmology, Graduate Texts in Physics, Springer International Publishing Ag, 2017, 543–624
-
Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations
in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427
-
A. Kh. Khachatryan, Kh. A. Khachatryan, “Solvability of a nonlinear integral equation in dynamical string
theory”, Theoret. and Math. Phys., 195:1 (2018), 529–537
-
Andrianov A.A. Lan Ch. Novikovi O.O. Wang Y.-F., “Integrable Minisuperspace Models With Liouville Field: Energy Density Self-Adjointness and Semiclassical Wave Packets”, Eur. Phys. J. C, 78:9 (2018), 786
|
Number of views: |
This page: | 852 | Full text: | 137 | References: | 45 | First page: | 18 |
|