RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2008, Volume 155, Number 1, Pages 130–139 (Mi tmf6198)  

This article is cited in 7 scientific papers (total in 7 papers)

Multicenter MICZ–Kepler systems

A. P. Nersesyanabc, V. R. Ohanyanad

a Yerevan State University
b Artsakh State University
c Yerevan Physics Institute
d Russian-Armenian (Slavonic) State University

Abstract: We obtain the classical solutions of the two-center MICZ–Kepler and MICZ–Kepler–Stark problems. We then suggest a model of the multicenter MICZ–Kepler system on an arbitrary conformally flat spherically symmetric three-dimensional space.

Keywords: multicenter MICZ–Kepler system, monopole, integrability

DOI: https://doi.org/10.4213/tmf6198

Full text: PDF file (371 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2008, 155:1, 618–626

Bibliographic databases:


Citation: A. P. Nersesyan, V. R. Ohanyan, “Multicenter MICZ–Kepler systems”, TMF, 155:1 (2008), 130–139; Theoret. and Math. Phys., 155:1 (2008), 618–626

Citation in format AMSBIB
\Bibitem{NerOha08}
\by A.~P.~Nersesyan, V.~R.~Ohanyan
\paper Multicenter MICZ--Kepler systems
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 130--139
\mathnet{http://mi.mathnet.ru/tmf6198}
\crossref{https://doi.org/10.4213/tmf6198}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2466485}
\zmath{https://zbmath.org/?q=an:05521527}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..618N}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 618--626
\crossref{https://doi.org/10.1007/s11232-008-0051-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255258900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449091595}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6198
  • https://doi.org/10.4213/tmf6198
  • http://mi.mathnet.ru/eng/tmf/v155/i1/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bellucci, S, “Two-center quantum MICZ-Kepler system and the Zeeman effect in the charge-dyon system”, Physics Letters A, 372:36 (2008), 5765  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    2. Nersessian, A, “Anisotropic inharmonic Higgs oscillator and related (MICZ-) Kepler-like systems”, Journal of Physics A-Mathematical and Theoretical, 41:15 (2008), 155203  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Nersessian A., “Generalizations of MICZ-Kepler system”, Physics of Atomic Nuclei, 73:3 (2010), 489–493  crossref  adsnasa  isi  scopus  scopus
    4. Lantoine G., Russell R.P., “Complete closed-form solutions of the Stark problem”, Celestial Mechanics & Dynamical Astronomy, 109:4 (2011), 333–366  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Anninos D., Anous T., Denef F., Konstantinidis G., Shaghoulian E., “Supergoop Dynamics”, J. High Energy Phys., 2013, no. 3, 081  crossref  isi  elib  scopus  scopus
    6. Gevorgyan E., Nersessian A., Ohanyan V., Tolkachev E., “Landau Problem on the Ellipsoid, Hyperboloid and Paraboloid of Revolution”, Mod. Phys. Lett. A, 29:29 (2014), 1450148  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Anninos D., Anous T., de Lange P., Konstantinidis G., “Conformal Quivers and Melting Molecules”, J. High Energy Phys., 2015, no. 3, 066  crossref  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:346
    Full text:122
    References:38
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021