|
This article is cited in 4 scientific papers (total in 4 papers)
Hamiltonian reductions of free particles under polar actions of compact Lie groups
L. Feherab, B. G. Pusztaicd a University of Szeged
b KFKI Research Institute for Particle and Nuclear Physics
c Université de Montréal
d Concordia University, Department of Mathematics and Statistics
Abstract:
We investigate classical and quantum Hamiltonian reductions of free geodesic
systems of complete Riemannian manifolds. We describe the reduced systems
under the assumption that the underlying compact symmetry group acts in
a polar manner in the sense that there exist regularly embedded, closed,
connected submanifolds intersecting all orbits orthogonally in
the configuration space. Hyperpolar actions on Lie groups and on symmetric spaces
lead to families of integrable systems of the spin Calogero–Sutherland type.
Keywords:
Hamiltonian reduction, polar action, integrable system
DOI:
https://doi.org/10.4213/tmf6201
Full text:
PDF file (554 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2008, 155:1, 646–658
Bibliographic databases:
Citation:
L. Feher, B. G. Pusztai, “Hamiltonian reductions of free particles under polar actions of compact Lie groups”, TMF, 155:1 (2008), 161–176; Theoret. and Math. Phys., 155:1 (2008), 646–658
Citation in format AMSBIB
\Bibitem{FehPus08}
\by L.~Feher, B.~G.~Pusztai
\paper Hamiltonian reductions of free particles under polar actions of compact Lie groups
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 161--176
\mathnet{http://mi.mathnet.ru/tmf6201}
\crossref{https://doi.org/10.4213/tmf6201}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2466488}
\zmath{https://zbmath.org/?q=an:1154.70327}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..646F}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 646--658
\crossref{https://doi.org/10.1007/s11232-008-0054-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255258900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449133441}
Linking options:
http://mi.mathnet.ru/eng/tmf6201https://doi.org/10.4213/tmf6201 http://mi.mathnet.ru/eng/tmf/v155/i1/p161
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Fehér L., Pusztai B.G., “Derivations of the trigonometric $BC_n$ Sutherland model by quantum Hamiltonian reduction”, Rev. Math. Phys., 22:6 (2010), 699–732
-
Hochgerner S., “Symmetry Reduction of Brownian Motion and Quantum Calogero–Moser Models”, Stoch. Dyn., 13:1 (2013), 1250007
-
Schornerus V., Sobko E., Isachenkov M., “Harmony of spinning conformal blocks”, J. High Energy Phys., 2017, no. 3, 085
-
Schomerus V., Sobko E., “From Spinning Conformal Blocks to Matrix Calogero-Sutherland Models”, J. High Energy Phys., 2018, no. 4, 052
|
Number of views: |
This page: | 332 | Full text: | 136 | References: | 31 | First page: | 4 |
|