RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2000, Volume 124, Number 1, Pages 18–35 (Mi tmf623)  

This article is cited in 2 scientific papers (total in 2 papers)

Ginzburg–Landau vortex analogues

A. V. Domrin

M. V. Lomonosov Moscow State University

Abstract: We consider a static one-dimensional Ginzburg–Landau equation (on a line segment or a circle) involving a large parameter $\lambda$. We show that as $\lambda\to\infty$, there exist solutions whose asymptotic behavior resembles the behavior of the two-dimensional vortex solutions.

DOI: https://doi.org/10.4213/tmf623

Full text: PDF file (296 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2000, 124:1, 872–886

Bibliographic databases:

Received: 08.10.1999

Citation: A. V. Domrin, “Ginzburg–Landau vortex analogues”, TMF, 124:1 (2000), 18–35; Theoret. and Math. Phys., 124:1 (2000), 872–886

Citation in format AMSBIB
\Bibitem{Dom00}
\by A.~V.~Domrin
\paper Ginzburg--Landau vortex analogues
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 18--35
\mathnet{http://mi.mathnet.ru/tmf623}
\crossref{https://doi.org/10.4213/tmf623}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1821310}
\zmath{https://zbmath.org/?q=an:0996.35072}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 872--886
\crossref{https://doi.org/10.1007/BF02551064}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000089449800002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf623
  • https://doi.org/10.4213/tmf623
  • http://mi.mathnet.ru/eng/tmf/v124/i1/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285  mathnet  crossref  crossref  isi  elib
    2. A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762  mathnet  crossref  mathscinet  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:221
    Full text:90
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018