RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2008, Volume 156, Number 2, Pages 237–249 (Mi tmf6244)  

This article is cited in 3 scientific papers (total in 3 papers)

Construction of invariant scalar particle wave equations on Riemannian manifolds with external gauge fields

O. L. Kurnyavkoa, I. V. Shirokovb

a Omsk Branch, Institute for Semiconductor Physics, Siberian Branch, RAS
b Irtysh Branch of Novosibirsk State Academy of Water Transport

Abstract: We consider the problem of constructing scalar particle wave equations in Riemannian spaces with external gauge fields whose symmetry group is the group of motions of the Riemannian space.

Keywords: Lie group, Lie algebra, Riemannian space, group of motions, scalar particle, Klein–Gordon equation, gauge field

DOI: https://doi.org/10.4213/tmf6244

Full text: PDF file (423 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2008, 156:2, 1169–1179

Bibliographic databases:

Received: 19.07.2007
Revised: 17.10.2007

Citation: O. L. Kurnyavko, I. V. Shirokov, “Construction of invariant scalar particle wave equations on Riemannian manifolds with external gauge fields”, TMF, 156:2 (2008), 237–249; Theoret. and Math. Phys., 156:2 (2008), 1169–1179

Citation in format AMSBIB
\Bibitem{KurShi08}
\by O.~L.~Kurnyavko, I.~V.~Shirokov
\paper Construction of invariant scalar particle wave equations on Riemannian manifolds with external gauge fields
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 237--249
\mathnet{http://mi.mathnet.ru/tmf6244}
\crossref{https://doi.org/10.4213/tmf6244}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2490252}
\zmath{https://zbmath.org/?q=an:1151.81331}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1169K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1169--1179
\crossref{https://doi.org/10.1007/s11232-008-0087-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000259085400007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549085317}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6244
  • https://doi.org/10.4213/tmf6244
  • http://mi.mathnet.ru/eng/tmf/v156/i2/p237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    2. Breev A.I. Shapovalov A.V., “Yang-Mills Gauge Fields Conserving the Symmetry Algebra of the Dirac Equation in a Homogeneous Space”, XXII International Conference on Integrable Systems and Quantum Symmetries, Journal of Physics Conference Series, 563, ed. Burdik C. Navratil O. Posta S., IOP Publishing Ltd, 2014, 012004  crossref  mathscinet  isi  scopus
    3. Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.  mathnet  crossref
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:333
    Full text:112
    References:54
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019