General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2008, Volume 156, Number 2, Pages 282–291 (Mi tmf6247)  

This article is cited in 19 scientific papers (total in 19 papers)

Radiation beyond four space–time dimensions

A. D. Mironovab, A. Yu. Morozovb

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We present a set of formulas describing classical radiation of a rank-$s$ tensor field from an accelerated pointlike source in a flat space–time of an arbitrary even dimension $d$. These formulas allow straightforwardly and algorithmically evaluating the total intensity and radiated momentum for any $s$ and $d$ by hand or using a computer. The practical application of the obtained results is limited for $s>1$ because the energy–momentum tensor for the pointlike source is not conserved. This usually means that contributions to the radiation from tensions of the forces causing the acceleration of the radiation source cannot be neglected.

Keywords: classical radiation, higher dimensions, string theory


Full text: PDF file (496 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2008, 156:2, 1209–1217

Bibliographic databases:

Received: 23.04.2007

Citation: A. D. Mironov, A. Yu. Morozov, “Radiation beyond four space–time dimensions”, TMF, 156:2 (2008), 282–291; Theoret. and Math. Phys., 156:2 (2008), 1209–1217

Citation in format AMSBIB
\by A.~D.~Mironov, A.~Yu.~Morozov
\paper Radiation beyond four space--time dimensions
\jour TMF
\yr 2008
\vol 156
\issue 2
\pages 282--291
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 2
\pages 1209--1217

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Morozov, “Hamiltonian formalism in the presence of higher derivatives”, Theoret. and Math. Phys., 157:2 (2008), 1542–1549  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Cardoso V., Dias Ó.J.C., Figueras P., “Gravitational radiation in $d>4$ from effective field theory”, Phys. Rev. D, 78:10 (2008), 105010, 20 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    3. Mironov A., “On the problem of radiation friction beyond four and six dimensions”, International Journal of Modern Physics A, 23:29 (2008), 4677–4686  crossref  adsnasa  isi  scopus  scopus
    4. P. I. Dunin-Barkovskii, A. V. Sleptsov, “Geometric Hamiltonian formalism for reparameterization-invariant theories with higher derivatives”, Theoret. and Math. Phys., 158:1 (2009), 61–81  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. Lechner K., “Ultraviolet singularities in classical brane theory”, J. High Energy Phys., 2010, no. 12, 063, 41 pp.  crossref  zmath  isi
    6. Andrzejewski K., Gonera J., Machalski P., Maślanka P., “Modified Hamiltonian formalism for higher-derivative theories”, Phys. Rev. D, 82:4 (2010), 045008, 12 pp.  crossref  adsnasa  isi  elib  scopus
    7. Aharonovich I., Horwitz L.P., “Radiation fields of a uniformly accelerating point source in the framework of Stueckelberg's manifestly covariant relativistic dynamics”, J. Math. Phys., 51:5 (2010), 052903, 27 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    8. Gal'tsov D.V., Kofinas G., Spirin P., Tomaras T.N., “Classical ultrarelativistic bremsstrahlung in extra dimensions”, Journal of High Energy Physics, 2010, no. 5, 055  crossref  zmath  isi  scopus  scopus
    9. Andrzejewski K., Gonera J., Maslanka P., “Euclidean path integral and higher-derivative theories”, Progr. Theoret. Phys., 125:2 (2011), 247–259  crossref  zmath  adsnasa  isi  elib  scopus  scopus
    10. Constantinou Y., Gal'tsov D., Spirin P., Tomaras T.N., “Scalar bremsstrahlung in gravity-mediated ultrarelativistic collisions”, Journal of High Energy Physics, 2011, no. 11, 118  crossref  zmath  isi  scopus  scopus
    11. Podolsky J., Svarc R., “Interpreting spacetimes of any dimension using geodesic deviation”, Phys Rev D, 85:4 (2012), 044057  crossref  adsnasa  isi  elib  scopus  scopus
    12. Andrzejewski K., Gonera J., Machalski R., Bolonek-Lason K., “On the triviality of higher-derivative theories”, Phys Lett B, 706:4–5 (2012), 427–430  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    13. Aharonovich I., Horwitz L.P., “Radiation-Reaction in Classical Off-Shell Electrodynamics. I. the Above MASS-Shell Case”, J. Math. Phys., 53:3 (2012), 032902  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Bachlechner T.C., McAllister L., “D-Brane Bremsstrahlung”, J. High Energy Phys., 2013, no. 10, 022  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Gal'tsov D. Spirin P. Tomaras T.N., “Gravitational Bremsstrahlung in Ultra-Planckian Collisions”, J. High Energy Phys., 2013, no. 1, 087  crossref  mathscinet  isi  scopus  scopus
    16. Constantinou Y. Spirin P., “Vector Bremsstrahlung by Ultrarelativistic Collisions in Higher Dimensions”, J. High Energy Phys., 2014, no. 1, 111  crossref  isi  scopus  scopus
    17. Birnholtz O. Hadar Sh., “Action For Reaction in General Dimension”, Phys. Rev. D, 89:4 (2014), 045003  crossref  adsnasa  isi  scopus  scopus
    18. Iso S., Kitazawa N., Yokoo S., “Electromagnetic Radiation in a Semi-Compact Space”, Phys. Lett. A, 382:8 (2018), 541–547  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Iso S., Ohta H., Suyama T., “Effective Potential For Revolving D-Branes”, J. High Energy Phys., 2019, no. 4, 151  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:389
    Full text:90
    First page:13

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019