|
This article is cited in 29 scientific papers (total in 29 papers)
Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation
I. Z. Golubchika, V. V. Sokolovb a Bashkir State Pedagogical University
b Landau Institute for Theoretical Physics, Centre for Non-linear Studies
Abstract:
We construct a second-order $2N$-component integrable system (with arbitrary $N$) whose spectral parameter lies on a curve of genus $g=1+(N-3)2^{N-2}$. The odd-order flows admit $N$-component reductions, which for $N=3$ coincide with the odd-order flows of the hierarchy of the Landau–Lifshitz equation.
DOI:
https://doi.org/10.4213/tmf626
Full text:
PDF file (218 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2000, 124:1, 909–917
Bibliographic databases:
Received: 31.01.2000
Citation:
I. Z. Golubchik, V. V. Sokolov, “Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation”, TMF, 124:1 (2000), 62–71; Theoret. and Math. Phys., 124:1 (2000), 909–917
Citation in format AMSBIB
\Bibitem{GolSok00}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper Multicomponent generalization of the hierarchy of the Landau--Lifshitz equation
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 62--71
\mathnet{http://mi.mathnet.ru/tmf626}
\crossref{https://doi.org/10.4213/tmf626}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1821313}
\zmath{https://zbmath.org/?q=an:1112.37324}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 909--917
\crossref{https://doi.org/10.1007/BF02551067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000089449800005}
Linking options:
http://mi.mathnet.ru/eng/tmf626https://doi.org/10.4213/tmf626 http://mi.mathnet.ru/eng/tmf/v124/i1/p62
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. E. Adler, “Discretizations of the Landau–Lifshits equation”, Theoret. and Math. Phys., 124:1 (2000), 897–908
-
I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type”, Funct. Anal. Appl., 36:3 (2002), 172–181
-
Meshkov, AG, “Integrable evolution equations on the N-dimensional sphere”, Communications in Mathematical Physics, 232:1 (2002), 1
-
Skrypnyk, T, “Spin generalizations of Clebsch and Neumann integrable systems”, Journal of Physics A-Mathematical and General, 36:15 (2003), 4407
-
A. G. Meshkov, V. V. Sokolov, “Classification of Integrable Divergent $N$-Component Evolution Systems”, Theoret. and Math. Phys., 139:2 (2004), 609–622
-
Skrypnyk, T, “Deformations of loop algebras and integrable systems: hierarchies of integrable equations”, Journal of Mathematical Physics, 45:12 (2004), 4578
-
Skrypnyk, T, “Deformations of loop algebras and classical integrable systems: Finite-dimensional Hamiltonian systems”, Reviews in Mathematical Physics, 16:7 (2004), 823
-
Sokolov, VV, “On decompositions of the loop algebra over so(3) into a sum of two subalgebras”, Doklady Mathematics, 70:1 (2004), 568
-
Skrypnyk, T, “'Doubled' generalized Landau-Lifshitz hierarchies and special quasigraded Lie algebras”, Journal of Physics A-Mathematical and General, 37:31 (2004), 7755
-
M. Yu. Balakhnev, “A class of integrable evolutionary vector equations”, Theoret. and Math. Phys., 142:1 (2005), 8–14
-
T. V. Skrypnik, “Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
-
Balakhnev MJ, “The vector generalization of the Landau-Lifshitz equation: Backlund transformation and solutions”, Applied Mathematics Letters, 18:12 (2005), 1363–1372
-
Anatoly G. Meshkov, Maxim Ju. Balakhnev, “Integrable Anisotropic Evolution Equations on a Sphere”, SIGMA, 1 (2005), 027, 11 pp.
-
Skrypnyk, T, “New integrable Gaudin-type systems, classical r-matrices and quasigraded Lie algebras”, Physics Letters A, 334:5–6 (2005), 390
-
M. Yu. Balakhnev, “Superposition formulas for integrable vector evolution equations”, Theoret. and Math. Phys., 154:2 (2008), 220–226
-
Balakhnev, MJ, “On a classification of integrable vectorial evolutionary equations”, Journal of Nonlinear Mathematical Physics, 15:2 (2008), 212
-
Gerdjikov V.S., Mikhailov A.V., Valchev T.I., “Reductions of integrable equations on A.III-type symmetric spaces”, J. Phys. A: Math. Theor., 43:43 (2010), 434015
-
M. Yu. Balakhnev, “First-Order Differential Substitutions for Equations Integrable on $\mathbb S^n$”, Math. Notes, 89:2 (2011), 184–193
-
V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces”, Theoret. and Math. Phys., 167:3 (2011), 740–750
-
Andrei V. Zotov, “$1+1$ Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp.
-
Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.
-
Valchev T.I., “On Certain Reductions of Integrable Equations on Symmetric Spaces”, International Workshop on Complex Structures, Integrability and Vector Fields, AIP Conference Proceedings, 1340, 2011, 154–164
-
Song Chong, Yu Jie, “The Cauchy Problem of Generalized Landau-Lifshitz Equation Into S (N)”, Sci. China-Math., 56:2 (2013), 283–300
-
Igonin S., van de Leur J., Manno G., Trushkov V., “Infinite-Dimensional Prolongation Lie Algebras and Multicomponent Landau-Lifshitz Systems Associated with Higher Genus Curves”, J. Geom. Phys., 68 (2013), 1–26
-
Sun XiaoWei, Wang YouDe, “New Geometric Flows on Riemannian Manifolds and Applications To Schrodinger-Airy Flows”, Sci. China-Math., 57:11 (2014), 2247–2272
-
Meshkov A. Sokolov V., “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett. Math. Phys., 104:3 (2014), 341–360
-
Skrypnyk T., “Reduction in Soliton Hierarchies and Special Points of Classical R-Matrices”, J. Geom. Phys., 130 (2018), 260–287
-
Valchev I T. Yanovski A.B., “Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions”, J. Nonlinear Math. Phys., 25:3 (2018), 442–461
-
Yanovski A.B., Valchev T.I., “Hermitian and Pseudo-Hermitian Reduction of the Gmv Auxiliary System. Spectral Properties of the Recursion Operators”, Advanced Computing in Industrial Mathematics (Bgsiam 2017), Studies in Computational Intelligence, 793, eds. Georgiev K., Todorov M., Georgiev I., Springer International Publishing Ag, 2019, 433–446
|
Number of views: |
This page: | 365 | Full text: | 139 | References: | 34 | First page: | 1 |
|