RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2008, Volume 157, Number 2, Pages 250–272 (Mi tmf6278)  

This article is cited in 8 scientific papers (total in 8 papers)

New distribution formulas for classical gas, clusters, and phase transitions

V. P. Maslov

M. V. Lomonosov Moscow State University

Abstract: We obtain a Bose–Einstein-type distribution for the classical vapor. We show that the analogue of the Bose condensate is the formation of clusters. We write a new $PV$ diagram for interaction with the form of the Lennard-Jones potential using scattering theory and a strict constraint. We compare our results with experimental data.

Keywords: cluster, phase transition, Gibbs paradox, Bose–Einstein distribution, percolation, nucleation, compressibility factor

DOI: https://doi.org/10.4213/tmf6278

Full text: PDF file (670 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2008, 157:2, 1577–1594

Bibliographic databases:

Received: 28.07.2008

Citation: V. P. Maslov, “New distribution formulas for classical gas, clusters, and phase transitions”, TMF, 157:2 (2008), 250–272; Theoret. and Math. Phys., 157:2 (2008), 1577–1594

Citation in format AMSBIB
\Bibitem{Mas08}
\by V.~P.~Maslov
\paper New distribution formulas for classical gas, clusters, and phase
transitions
\jour TMF
\yr 2008
\vol 157
\issue 2
\pages 250--272
\mathnet{http://mi.mathnet.ru/tmf6278}
\crossref{https://doi.org/10.4213/tmf6278}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2493781}
\zmath{https://zbmath.org/?q=an:1157.82324}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1577M}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 2
\pages 1577--1594
\crossref{https://doi.org/10.1007/s11232-008-0131-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261657100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58149267551}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6278
  • https://doi.org/10.4213/tmf6278
  • http://mi.mathnet.ru/eng/tmf/v157/i2/p250

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, “Clustering in an ideal gas in nanostructures as a Bose-condensation-type phenomenon in an asymptotically probabilistically quantized space”, Theoret. and Math. Phys., 157:3 (2008), 1760–1761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. P. Maslov, “Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model”, Theoret. and Math. Phys., 159:1 (2009), 561–562  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. V. P. Maslov, “A new distribution generalizing the Bose–Einstein distribution”, Theoret. and Math. Phys., 159:2 (2009), 684–685  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. V. P. Maslov, “Fluid thermodynamics: Qualitative consideration”, Theoret. and Math. Phys., 161:2 (2009), 1513–1528  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Kozlov V.V., “Kinetics of collisionless gas: Equalization of temperature, growth of the coarse-grained entropy and the Gibbs paradox”, Regul. Chaotic Dyn., 14:4-5 (2009), 535–540  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    6. Maslov V.P., “Phase transitions of the first and second kind as economic crises. Abstract thermodynamics of fluids”, Russ. J. Math. Phys., 16:3 (2009), 323–344  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    7. Apfel'baum E.M., Vorob'ev V.S., “Correspondence between the Ideal Bose Gas in a Space of Fractional Dimension and a Dense Nonideal Gas According to Maslov's Scheme”, Russian Journal of Mathematical Physics, 18:1 (2011), 26–32  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Maslov V.P., “Mixture of New Ideal Gases and the Solution of the Gibbs and Einstein Paradoxes”, Russian Journal of Mathematical Physics, 18:1 (2011), 83–101  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:633
    Full text:151
    References:62
    First page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019