RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2009, Volume 159, Number 1, Pages 174–176 (Mi tmf6340)  

This article is cited in 5 scientific papers (total in 5 papers)

Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model

V. P. Maslov

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: We discuss the relation between the Bose condensate and economic crisis problems, number theory, and clusterization.

Keywords: Bose condensate, percolation, $\lambda$-point, crisis

DOI: https://doi.org/10.4213/tmf6340

Full text: PDF file (332 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2009, 159:1, 561–562

Bibliographic databases:

Received: 09.02.2009

Citation: V. P. Maslov, “Bose condensate in the two-dimensional case, the $\lambda$-point, and the Thiess–Landau two-fluid model”, TMF, 159:1 (2009), 174–176; Theoret. and Math. Phys., 159:1 (2009), 561–562

Citation in format AMSBIB
\Bibitem{Mas09}
\by V.~P.~Maslov
\paper Bose condensate in the~two-dimensional case, the~$\lambda$-point, and the~Thiess--Landau two-fluid model
\jour TMF
\yr 2009
\vol 159
\issue 1
\pages 174--176
\mathnet{http://mi.mathnet.ru/tmf6340}
\crossref{https://doi.org/10.4213/tmf6340}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2547444}
\zmath{https://zbmath.org/?q=an:1177.82044}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..561M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 1
\pages 561--562
\crossref{https://doi.org/10.1007/s11232-009-0045-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269080400011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349524702}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6340
  • https://doi.org/10.4213/tmf6340
  • http://mi.mathnet.ru/eng/tmf/v159/i1/p174

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, “A new distribution generalizing the Bose–Einstein distribution”, Theoret. and Math. Phys., 159:2 (2009), 684–685  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. V. P. Maslov, “Fluid thermodynamics: Qualitative consideration”, Theoret. and Math. Phys., 161:2 (2009), 1513–1528  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. P. Maslov, “Two-fluid picture of supercritical phenomena”, Theoret. and Math. Phys., 180:3 (2014), 1096–1129  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. Panin V.E., Egorushkin V.E., Moiseenko D. D. and Maksimov P.V., Kulkov S.N., Panin S.V., “Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading”, Comput. Mater. Sci., 116 (2016), 74–81  crossref  isi  elib  scopus
    5. Egorushkin V.E., Panin V.E., “Scale invariance of plastic deformation of the planar and crystal subsystems of solids under superplastic conditions”, Phys. Mesomech., 20:1 (2017), 1–9  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:544
    Full text:132
    References:107
    First page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020