RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2009, Volume 159, Number 2, Pages 220–242 (Mi tmf6344)  

This article is cited in 1 scientific paper (total in 1 paper)

Non-Abelian gauge theories, prepotentials, and Abelian differentials

A. V. Marshakovab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We discuss particular solutions of integrable systems (starting from the well-known dispersionless KdV and Toda hierarchies) that most directly define the generating functions for the Gromov–Witten classes in terms of a rational complex curve. From the mirror theory standpoint, these generating functions can be identified with the simplest prepotentials of complex manifolds, and we present some new exactly calculable examples of such prepotentials. For higher-genus curves, which in this context correspond to non-Abelian gauge theories via the topological string/gauge duality, we construct similar solutions using an extended basis of Abelian differentials, generally with extra singularities at the branch points of the curve.

Keywords: supersymmetric gauge theory, topological string, integrable system

DOI: https://doi.org/10.4213/tmf6344

Full text: PDF file (617 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2009, 159:2, 598–617

Bibliographic databases:


Citation: A. V. Marshakov, “Non-Abelian gauge theories, prepotentials, and Abelian differentials”, TMF, 159:2 (2009), 220–242; Theoret. and Math. Phys., 159:2 (2009), 598–617

Citation in format AMSBIB
\Bibitem{Mar09}
\by A.~V.~Marshakov
\paper Non-Abelian gauge theories, prepotentials, and Abelian differentials
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 220--242
\mathnet{http://mi.mathnet.ru/tmf6344}
\crossref{https://doi.org/10.4213/tmf6344}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2567338}
\zmath{https://zbmath.org/?q=an:1174.81009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..598M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 598--617
\crossref{https://doi.org/10.1007/s11232-009-0049-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269080500004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350035892}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6344
  • https://doi.org/10.4213/tmf6344
  • http://mi.mathnet.ru/eng/tmf/v159/i2/p220

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Marshakov, A. D. Mironov, A. Yu. Morozov, “Combinatorial expansions of conformal blocks”, Theoret. and Math. Phys., 164:1 (2010), 831–852  mathnet  crossref  crossref  adsnasa  isi  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:437
    Full text:134
    References:36
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019