RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2009, Volume 159, Number 2, Pages 266–282 (Mi tmf6348)  

Algebraic integration of sigma-model field equations

N. T. Yilmaz

Çankaya University

Abstract: We prove that the dualization algebra of the sigma model with a symmetric coset space is a Lie algebra and show that it generates an appropriate adjoint representation that allows integrating the field equations locally, which yields first-order equations.

Keywords: sigma model, first-order formulation, dualization algebra

DOI: https://doi.org/10.4213/tmf6348

Full text: PDF file (461 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2009, 159:2, 640–653

Bibliographic databases:


Citation: N. T. Yilmaz, “Algebraic integration of sigma-model field equations”, TMF, 159:2 (2009), 266–282; Theoret. and Math. Phys., 159:2 (2009), 640–653

Citation in format AMSBIB
\Bibitem{Yil09}
\by N.~T.~Yilmaz
\paper Algebraic integration of sigma-model field equations
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 266--282
\mathnet{http://mi.mathnet.ru/tmf6348}
\crossref{https://doi.org/10.4213/tmf6348}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2567341}
\zmath{https://zbmath.org/?q=an:05620043}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..640Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 640--653
\crossref{https://doi.org/10.1007/s11232-009-0052-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269080500007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350162112}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6348
  • https://doi.org/10.4213/tmf6348
  • http://mi.mathnet.ru/eng/tmf/v159/i2/p266

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:202
    Full text:85
    References:27
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020