RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2009, Volume 159, Number 3, Pages 459–474 (Mi tmf6365)  

This article is cited in 4 scientific papers (total in 4 papers)

Integrable systems and squared eigenfunctions

D. J. Kaup

Department of Matematics, University of Central Florida

Abstract: We briefly review the Ablowitz–Kaup–Newell–Segur (AKNS) formalism for 1D$+$1D integrable systems starting with the Lax pair and continuing into integrable perturbation theory and squared eigenfunctions. We emphasize the common features of the inverse scattering transform across a wide range of known 1D$+$1D systems. We tailor the various steps to be the same as in treating higher-order systems. We briefly review both the direct and inverse scattering problems and then consider perturbations of the potentials and the scattering data. For the latter topic, we reformulate the original treatment of perturbations of the AKNS system such that it aligns with the common features of 1D$+$1D systems. We use a recent approach to derive the perturbations of the potentials due to perturbations of the scattering data in the absence of solitons. Finally, we show that recent results where the squared eigenfunctions and their adjoints were found as sums of products (not simply products) of Jost functions are determined by symmetries imposed on the potential matrix.

Keywords: direct scattering problem, inverse scattering problem, perturbation, squared eigenfunction

DOI: https://doi.org/10.4213/tmf6365

Full text: PDF file (433 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2009, 159:3, 806–818

Bibliographic databases:


Citation: D. J. Kaup, “Integrable systems and squared eigenfunctions”, TMF, 159:3 (2009), 459–474; Theoret. and Math. Phys., 159:3 (2009), 806–818

Citation in format AMSBIB
\Bibitem{Kau09}
\by D.~J.~Kaup
\paper Integrable systems and squared eigenfunctions
\jour TMF
\yr 2009
\vol 159
\issue 3
\pages 459--474
\mathnet{http://mi.mathnet.ru/tmf6365}
\crossref{https://doi.org/10.4213/tmf6365}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2568564}
\zmath{https://zbmath.org/?q=an:1175.81127}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..806K}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 3
\pages 806--818
\crossref{https://doi.org/10.1007/s11232-009-0069-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269118800014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350026532}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6365
  • https://doi.org/10.4213/tmf6365
  • http://mi.mathnet.ru/eng/tmf/v159/i3/p459

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kaup D.J., Yang J., “The inverse scattering transform and squared eigenfunctions for a degenerate $3\times 3$ operator”, Inverse Problems, 25:10 (2009), 105010, 21 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    2. Kaup D.J., Van Gorder R.A., “Squared eigenfunctions and the perturbation theory for the nondegenerate $N\times N$ operator: a general outline”, J. Phys. A, 43:43 (2010), 434019, 18 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Kaup D.J., Van Gorder R.A., “The inverse scattering transform and squared eigenfunctions for the nondegenerate $3\times 3$ operator and its soliton structure”, Inverse Problems, 26:5 (2010), 055005, 34 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. Takahashi D.A., “One-Dimensional Integrable Spinor BECs Mapped to Matrix Nonlinear Schrodinger Equation and Solution of Bogoliubov Equation in These Systems”, J. Phys. Soc. Japan, 80:1 (2011), 015002  crossref  adsnasa  isi  scopus  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:355
    Full text:108
    References:53
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019