RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2009, Volume 160, Number 2, Pages 249–269 (Mi tmf6396)  

This article is cited in 8 scientific papers (total in 8 papers)

The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry

N. N. Bogolyubov (Jr.)ab, A. K. Prikarpatskiicd, U. Tanerief

a Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
b The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
c Ivan Franko State Pedagogical University, Drogobych, Ukraine
d The AGH University of Science and Technology, Department of Applied Mathematics, Krakow, Poland
e Eastern Mediterranean University, Department of Applied Mathematics and Computer Science, Famagusta
f Kyrenia American University, Institute of Graduate Studies, Kyrenia, Cyprus

Abstract: We formulate the main fundamental principles characterizing the vacuum field structure and also analyze the model of the related vacuum medium and charged point particle dynamics using the developed field theory methods. We consider a new approach to Maxwell's theory of electrodynamics, newly deriving the basic equations of that theory from the suggested vacuum field structure principles; we obtain the classical special relativity theory relation between the energy and the corresponding point particle mass. We reconsider and analyze the expression for the Lorentz force in arbitrary noninertial reference frames. We also present some new interpretations of the relations between special relativity theory and quantum mechanics. We obtain the famous quantum mechanical Schrödinger-type equations for a relativistic point particle in external potential and magnetic fields in the semiclassical approximation as the Planck constant $\hbar\to0$ and the speed of light $c\to\infty$.

Keywords: vacuum structure, local mass conservation law, local momentum conservation law, Lorentz force, relativity theory

DOI: https://doi.org/10.4213/tmf6396

Full text: PDF file (504 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2009, 160:2, 1079–1095

Bibliographic databases:

Received: 20.08.2008

Citation: N. N. Bogolyubov (Jr.), A. K. Prikarpatskii, U. Taneri, “The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry”, TMF, 160:2 (2009), 249–269; Theoret. and Math. Phys., 160:2 (2009), 1079–1095

Citation in format AMSBIB
\Bibitem{BogPriTan09}
\by N.~N.~Bogolyubov (Jr.), A.~K.~Prikarpatskii, U.~Taneri
\paper The~vacuum structure, special relativity theory, and~quantum mechanics: A~return to the~field theory approach without geometry
\jour TMF
\yr 2009
\vol 160
\issue 2
\pages 249--269
\mathnet{http://mi.mathnet.ru/tmf6396}
\crossref{https://doi.org/10.4213/tmf6396}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2604550}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1079B}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 2
\pages 1079--1095
\crossref{https://doi.org/10.1007/s11232-009-0101-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000269885900002}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6396
  • https://doi.org/10.4213/tmf6396
  • http://mi.mathnet.ru/eng/tmf/v160/i2/p249

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The Lagrangian and Hamiltonian analysis of some relativistic electrodynamics models and their quantization”, Condensed Matter Physics, 12:4 (2009), 603–616  crossref  isi
    2. Bogolubov N.N., Jr., Prykarpatsky A.K., Taneri U., “The relativistic electrodynamics least action principles revisited: new charged point particle and hadronic string models analysis”, Internat. J. Theoret. Phys., 49:4 (2010), 798–820  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Slawianowski J.J., “Geometric nonlinearities in field theory, condensed matter and analytical mechanics”, Condensed Matter Physics, 13:4 (2010), 43103  crossref  isi  elib  scopus
    4. Prykarpatsky A.K., “Reminiscences of unforgettable times of my collaboration with Nikolai N. Bogolubov (Jr.) Foreword”, Condensed Matter Physics, 13:4 (2010), 40102  isi
    5. Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The vacuum structure and special relativity revisited: A field theory no-geometry approach within the Lagrangian and Hamiltonian formalisms”, Physics of Particles and Nuclei, 41:6 (2010), 913–920  crossref  adsnasa  isi  scopus
    6. Bogolubov N.N. (Jr.), Prykarpatsky A.K., “The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization”, Found. Phys., 40:5 (2010), 469–493  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Prykarpatsky A.K., Bogolubov Nikolai N. Jr., “The Maxwell Electromagnetic Equations and the Lorentz Type Force Derivation-The Feynman Approach Legacy”, Internat J Theoret Phys, 51:1 (2012), 237–245  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. Prykarpatsky A.K., Bogolubov Jr. N. N., “On the Classical Maxwell–Lorentz Electrodynamics, the Electron Inertia Problem, and the Feynman Proper Time Paradigm”, Ukr. J. Phys., 61:3 (2016), 187–212  crossref  isi  elib  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:1063
    Full text:303
    References:69
    First page:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019