Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2004, Volume 139, Number 3, Pages 499–511 (Mi tmf64)  

This article is cited in 2 scientific papers (total in 2 papers)

Nonideal Bose Gases: Correlation Inequalities and Bose Condensation

A. Bernala, M. Corginia, D. P. Sankovichb

a Universidad de La Serena
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We consider two simple model systems describing effective repulsion in a nonideal Bose gas. The interaction Hamiltonians in these systems can be analytically represented as functions of the occupation number operators for modes with nonzero momenta ($p\neq0$). One of these models contains an interaction term corresponding to repulsion of bosons with the mode $p=0$ and ensuring the thermodynamic superstability of the system; the other model does not contain such a term. We use the Bogoliubov–Dirac–Ginibre approximation and the method of correlation inequalities to prove that a Bose condensate can exist in these model systems. Because of the character of interaction, the condensate can be formed in the superstable case for any values of the spatial dimensions, temperature, and positive chemical potentials.

Keywords: nonideal Bose gas, Bose condensation, stability, self-consistency equation, Fock space

DOI: https://doi.org/10.4213/tmf64

Full text: PDF file (278 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2004, 139:3, 866–877

Bibliographic databases:

Received: 30.01.2003
Revised: 04.09.2003

Citation: A. Bernal, M. Corgini, D. P. Sankovich, “Nonideal Bose Gases: Correlation Inequalities and Bose Condensation”, TMF, 139:3 (2004), 499–511; Theoret. and Math. Phys., 139:3 (2004), 866–877

Citation in format AMSBIB
\Bibitem{BerCorSan04}
\by A.~Bernal, M.~Corgini, D.~P.~Sankovich
\paper Nonideal Bose Gases: Correlation Inequalities and Bose Condensation
\jour TMF
\yr 2004
\vol 139
\issue 3
\pages 499--511
\mathnet{http://mi.mathnet.ru/tmf64}
\crossref{https://doi.org/10.4213/tmf64}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2085791}
\zmath{https://zbmath.org/?q=an:1178.82025}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..866B}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 3
\pages 866--877
\crossref{https://doi.org/10.1023/B:TAMP.0000029708.30746.56}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222713300011}


Linking options:
  • http://mi.mathnet.ru/eng/tmf64
  • https://doi.org/10.4213/tmf64
  • http://mi.mathnet.ru/eng/tmf/v139/i3/p499

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Corgini, M, “Bogolyubov approximation for diagonal model of an interacting Bose gas”, Physics Letters A, 360:3 (2007), 419  crossref  adsnasa  isi  elib  scopus  scopus
    2. Bogolyubov N. N. Jr., Sankovich D.P., “An Approximating Hamiltonian Method in the Theory of Imperfect Bose Gases”, Physical Properties of Nanosystems, Nato Security Through Science Series B: Physics and Biophysics, 2011, 203–212  crossref  adsnasa  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:322
    Full text:163
    References:58
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021