|
This article is cited in 19 scientific papers (total in 19 papers)
Unitary integrals and related matrix models
A. Yu. Morozov Institute for Theoretical and Experimental Physics, Moscow,
Russia
Abstract:
We briefly review the basic properties of unitary matrix integrals, using three matrix models to analyze their properties: the ordinary unitary, the Brezin–Gross–Witten, and the Harish-Chandra–Itzykson–Zuber models. We especially emphasize the nontrivial aspects of the theory, from the De Wit–t'Hooft anomaly in unitary integrals to the problem of calculating correlators with the Itzykson–Zuber measure. We emphasize the method of character expansions as a technical tool. Unitary integrals are still insufficiently investigated, and many new results should be expected as this field attracts increased attention.
Keywords:
matrix model, unitary group
DOI:
https://doi.org/10.4213/tmf6453
Full text:
PDF file (902 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2010, 162:1, 1–33
Bibliographic databases:
Received: 08.07.2009
Citation:
A. Yu. Morozov, “Unitary integrals and related matrix models”, TMF, 162:1 (2010), 3–40; Theoret. and Math. Phys., 162:1 (2010), 1–33
Citation in format AMSBIB
\Bibitem{Mor10}
\by A.~Yu.~Morozov
\paper Unitary integrals and related matrix models
\jour TMF
\yr 2010
\vol 162
\issue 1
\pages 3--40
\mathnet{http://mi.mathnet.ru/tmf6453}
\crossref{https://doi.org/10.4213/tmf6453}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2677166}
\zmath{https://zbmath.org/?q=an:1196.81201}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162....1M}
\elib{https://elibrary.ru/item.asp?id=15329800}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 1
\pages 1--33
\crossref{https://doi.org/10.1007/s11232-010-0001-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000274522000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76849084342}
Linking options:
http://mi.mathnet.ru/eng/tmf6453https://doi.org/10.4213/tmf6453 http://mi.mathnet.ru/eng/tmf/v162/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Balantekin A.B., “Character expansions in physics”, Symmetries in Nature, AIP Conf. Proc., 1323, 2010, 1–5
-
Mironov A., Morozov A., Shakirov Sh., “A direct proof of AGT conjecture at beta=1”, J. High Energy Phys., 2011, no. 2, 067
-
Mironov A., Morozov A., Shakirov Sh., “Brezin-Gross-Witten model as “pure gauge” limit of Selberg integrals”, J. High Energy Phys., 2011, no. 3, 102
-
Karczmarek J.L., Semenoff G.W., “Large representation recurrences in large $N$ random unitary matrix models”, J. High Energy Phys., 2011, no. 10, 066
-
Alexandrov A., “Matrix models for random partitions”, Nuclear Phys B, 851:3 (2011), 620–650
-
Alexandrov A., Mironov A., Morozov A., Natanzon S., “Integrability of Hurwitz partition functions”, J. Phys. A, 45:4 (2012), 045209, 10 pp.
-
Mironov A., Morozov A., Shakirov Sh., “Towards a proof of AGT conjecture by methods of matrix models”, Internat. J. Modern Phys. A, 27:1 (2012), 1230001, 32 pp.
-
Mironov A., Morozov A., Shakirov Sh., Smirnov A., “Proving AGT conjecture as HS duality: Extension to five dimensions”, Nuclear Phys. B, 855:1 (2012), 128–151
-
JETP Letters, 95:11 (2012), 586–593
-
Romo M., Tierz M., “Unitary Chern–Simons matrix model and the Villain lattice action”, Phys. Rev. D, 86:4 (2012), 045027, 10 pp.
-
Mironov A. Morozov A. Morozov And., “Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid”, J. High Energy Phys., 2012, no. 3, 034, 33 pp.
-
Dubinkin O., “On the Virasoro Constraints For Torus Knots”, J. Phys. A-Math. Theor., 47:48 (2014), 485203
-
Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080
-
Mironov A., Morozov A., “Correlators in Tensor Models From Character Calculus”, Phys. Lett. B, 774 (2017), 210–216
-
Mironov A. Morozov A., “On Determinant Representation and Integrability of Nekrasov Functions”, Phys. Lett. B, 773 (2017), 34–46
-
Itoyama H. Mironov A. Morozov A., “Cut and Join Operator Ring in Tensor Models”, Nucl. Phys. B, 932 (2018), 52–118
-
Mironov A. Morozov A., “Sum Rules For Characters From Character-Preservation Property of Matrix Models”, J. High Energy Phys., 2018, no. 8, 163
-
Mironov A. Morozov A., “Q-Painleve Equation From Virasoro Constraints”, Phys. Lett. B, 785 (2018), 207–210
-
Galakhov D., “Why Is Landau-Ginzburg Link Cohomology Equivalent to Khovanov Homology?”, J. High Energy Phys., 2019, no. 5, 085
|
Number of views: |
This page: | 857 | Full text: | 220 | References: | 82 | First page: | 19 |
|