RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 162, Number 3, Pages 422–438 (Mi tmf6480)  

This article is cited in 1 scientific paper (total in 1 paper)

Functionals for the means of observables for one-dimensional infinite-particle systems

T. V. Ryabukha

Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine

Abstract: We study the problem of the existence of means of observables for infinite-particle systems. Using solutions of the Cauchy problems for the BBGKY hierarchy and for its dual, we prove the local existence in time of the mean-value functionals in the cases where either the observables or the states vary in time. We also discuss the problem of the existence of such functionals for several different classes of observables and for an arbitrary time interval.

Keywords: infinite-particle system, BBGKY hierarchy, dual BBGKY hierarchy, cumulant (semi-invariant), means of observables

DOI: https://doi.org/10.4213/tmf6480

Full text: PDF file (517 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 162:3, 352–365

Bibliographic databases:

Received: 07.04.2009

Citation: T. V. Ryabukha, “Functionals for the means of observables for one-dimensional infinite-particle systems”, TMF, 162:3 (2010), 422–438; Theoret. and Math. Phys., 162:3 (2010), 352–365

Citation in format AMSBIB
\Bibitem{Rya10}
\by T.~V.~Ryabukha
\paper Functionals for the~means of observables for one-dimensional infinite-particle systems
\jour TMF
\yr 2010
\vol 162
\issue 3
\pages 422--438
\mathnet{http://mi.mathnet.ru/tmf6480}
\crossref{https://doi.org/10.4213/tmf6480}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682133}
\zmath{https://zbmath.org/?q=an:1195.82009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..352R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 3
\pages 352--365
\crossref{https://doi.org/10.1007/s11232-010-0028-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276724000008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952066248}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6480
  • https://doi.org/10.4213/tmf6480
  • http://mi.mathnet.ru/eng/tmf/v162/i3/p422

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. S. Borovchenkova, V. I. Gerasimenko, “On the non-Markovian Enskog equation for granular gases”, J. Phys. A, 47:3 (2014), 035001, 18 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:190
    Full text:56
    References:58
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019