RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 162, Number 3, Pages 439–458 (Mi tmf6481)  

This article is cited in 1 scientific paper (total in 1 paper)

Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential

V. A. Moskalenkoab, L. A. Dohotaruc, R. Citrod

a Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
b Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Moldova
c Technical University, Chisinau, Moldova
d Dipartimento di Fisica E. R. Caianiello, Università degli Studi di Salerno and CNISM, Baronissi, Italy

Abstract: We develop a diagram theory for the periodic Anderson model assuming that the Coulomb repulsion of localized $f$ electrons is the main parameter of the theory. the $f$ electrons are strongly correlated and the $c$ conduction electrons are uncorrelated. We determine the $f$-electron correlation function and the $c$-electron mass operator. We formulate the Dyson equation for $c$ electrons and a Dyson-type equation for $f$ electrons and their propagators. We define the skeleton diagrams for the correlation function and the thermodynamic functional. We establish the stationarity of the renormalized thermodynamic potential under variation of the mass operator. the obtained results are applicable to both the normal and the superconducting system states.

Keywords: strongly correlated electron system, Dyson equation, Green's function, periodic Anderson model

DOI: https://doi.org/10.4213/tmf6481

Full text: PDF file (717 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 162:3, 366–382

Bibliographic databases:

Received: 21.05.2009
Revised: 15.07.2009

Citation: V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, TMF, 162:3 (2010), 439–458; Theoret. and Math. Phys., 162:3 (2010), 366–382

Citation in format AMSBIB
\Bibitem{MosDohCit10}
\by V.~A.~Moskalenko, L.~A.~Dohotaru, R.~Citro
\paper Diagram theory for the~periodic Anderson model: Stationarity of the~thermodynamic potential
\jour TMF
\yr 2010
\vol 162
\issue 3
\pages 439--458
\mathnet{http://mi.mathnet.ru/tmf6481}
\crossref{https://doi.org/10.4213/tmf6481}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682134}
\zmath{https://zbmath.org/?q=an:05790862}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..366M}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 3
\pages 366--382
\crossref{https://doi.org/10.1007/s11232-010-0029-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276724000009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952044134}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6481
  • https://doi.org/10.4213/tmf6481
  • http://mi.mathnet.ru/eng/tmf/v162/i3/p439

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary property of the thermodynamic potential of the Hubbard model in strong coupling diagrammatic approach for superconducting state”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  adsnasa  isi  elib  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:291
    Full text:74
    References:47
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019