RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 163, Number 1, Pages 163–176 (Mi tmf6494)  

This article is cited in 7 scientific papers (total in 7 papers)

A new approach for describing glass transition kinetics

M. G. Vasinab, N. M. Shchelkachevcdb, V. M. Vinokurb

a Physical-Technical Institute, Ural Branch, RAS, Izhevsk, Russia
b Argonne National Laboratory, Argonne, USA
c Moscow Institute of Physics and Technology, Moscow, Russia
d Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia

Abstract: We use a functional integral technique generalizing the Keldysh diagram technique to describe glass transition kinetics. We show that the Keldysh functional approach takes the dynamical determinant arising in the glass dynamics into account exactly and generalizes the traditional approach based on using the supersymmetric dynamic generating functional method. In contrast to the supersymmetric method, this approach allows avoiding additional Grassmannian fields and tracking the violation of the fluctuation-dissipation theorem explicitly. We use this method to describe the dynamics of an Edwards–Anderson soft spin-glass-type model near the paramagnet–glass transition. We show that a Vogel–Fulcher-type dynamics arises in the fluctuation region only if the fluctuation-dissipation theorem is violated in the process of dynamical renormalization of the Keldysh action in the replica space.

Keywords: glass transition, nonequilibrium transition, Keldysh technique

DOI: https://doi.org/10.4213/tmf6494

Full text: PDF file (456 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 163:1, 537–548

Bibliographic databases:

Received: 18.08.2009

Citation: M. G. Vasin, N. M. Shchelkachev, V. M. Vinokur, “A new approach for describing glass transition kinetics”, TMF, 163:1 (2010), 163–176; Theoret. and Math. Phys., 163:1 (2010), 537–548

Citation in format AMSBIB
\Bibitem{VasChtVin10}
\by M.~G.~Vasin, N.~M.~Shchelkachev, V.~M.~Vinokur
\paper A~new approach for describing glass transition kinetics
\jour TMF
\yr 2010
\vol 163
\issue 1
\pages 163--176
\mathnet{http://mi.mathnet.ru/tmf6494}
\crossref{https://doi.org/10.4213/tmf6494}
\zmath{https://zbmath.org/?q=an:1195.82071}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..537V}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 1
\pages 537--548
\crossref{https://doi.org/10.1007/s11232-010-0042-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277418800012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952256279}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6494
  • https://doi.org/10.4213/tmf6494
  • http://mi.mathnet.ru/eng/tmf/v163/i1/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vasin M., “Gauge theory of glass transition”, J Stat Mech Theory Exp, 2011, P05009  crossref  isi  elib  scopus
    2. M. G. Vasin, E. E. Tareeva, T. I. Shchelkacheva, N. M. Shchelkachev, “Ultrametricity of the state space in glasses”, Theoret. and Math. Phys., 174:2 (2013), 197–208  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. M. G. Vasin, “Gauge theory of the liquid–glass transition in static and dynamical approaches”, Theoret. and Math. Phys., 174:3 (2013), 406–420  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Ryltsev R.E., Chtchelkatchev N.M., Ryzhov V.N., “Superfragile Glassy Dynamics of a One-Component System with Isotropic Potential: Competition of Diffusion and Frustration”, Phys. Rev. Lett., 110:2 (2013), 025701  crossref  adsnasa  isi  elib  scopus
    5. Vasin M.G., “Reprint of “Theoretical Description of Non-Debye Relaxation, and Boson Peak in Terms of Gauge Theory of Glass Transition””, J. Non-Cryst. Solids, 401:SI (2014), 78–81  crossref  isi  scopus
    6. Vasin M.G., “Theoretical Description of Non-Debye Relaxation, and Boson Peak in Terms of Gauge Theory of Glass Transition”, J. Non-Cryst. Solids, 387 (2014), 139–142  crossref  adsnasa  isi  scopus
    7. Vasin M.G., “Dynamical Heterogeneity in Terms of Gauge Theory of Glass Transition”, Physica A, 431 (2015), 18–28  crossref  mathscinet  adsnasa  isi  elib  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:604
    Full text:146
    References:42
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020