RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 163, Number 3, Pages 430–448 (Mi tmf6512)  

This article is cited in 7 scientific papers (total in 7 papers)

Weyl–Eddington–Einstein affine gravity in the context of modern cosmology

A. T. Filippov

Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia

Abstract: We propose new models of the “affine” theory of gravity in multidimensional space–times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein's proposed method for obtaining the geometry using the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein theory with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) meson, and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the Lagrangian determines further details of the theory, for example, the nature of the fields that can describe massive particles, tachyons, or even “phantoms”. In “natural" geometric theories, dark energy must also arise. The basic parameters of the theory (cosmological constant, mass, possible dimensionless constants) are theoretically indeterminate, but in the framework of modern "multiverse” ideas, this is more a virtue than a defect. We consider further extensions of the affine models and in more detail discuss approximate effective (“physical”) Lagrangians that can be applied to the cosmology of the early Universe.

Keywords: gravitation, cosmology, affine connection, dark energy, inflation

DOI: https://doi.org/10.4213/tmf6512

Full text: PDF file (555 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 163:3, 753–767

Bibliographic databases:


Citation: A. T. Filippov, “Weyl–Eddington–Einstein affine gravity in the context of modern cosmology”, TMF, 163:3 (2010), 430–448; Theoret. and Math. Phys., 163:3 (2010), 753–767

Citation in format AMSBIB
\Bibitem{Fil10}
\by A.~T.~Filippov
\paper Weyl--Eddington--Einstein affine gravity in the~context of modern cosmology
\jour TMF
\yr 2010
\vol 163
\issue 3
\pages 430--448
\mathnet{http://mi.mathnet.ru/tmf6512}
\crossref{https://doi.org/10.4213/tmf6512}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2730143}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..753F}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 3
\pages 753--767
\crossref{https://doi.org/10.1007/s11232-010-0059-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280090300008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954664619}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6512
  • https://doi.org/10.4213/tmf6512
  • http://mi.mathnet.ru/eng/tmf/v163/i3/p430

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Proc. Steklov Inst. Math., 272 (2011), 107–118  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    2. Davydov E.A., “Vector fields in cosmology”, 8th International Conference on Progress in Theoretical Physics (ICPTP 2011), AIP Conf. Proc., 1444, eds. Mebarki N., Mimouni J., Belaloui N., Moussa K., Amer. Inst. Physics, 2012, 125–132  crossref  isi  scopus
    3. A. T. Filippov, “Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications”, Theoret. and Math. Phys., 177:2 (2013), 1555–1577  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Davydov E., Filippov A.T., “Dilaton-Scalar Models in the Context of Generalized Affine Gravity Theories: their Properties and Integrability”, Gravit. Cosmol., 19:4 (2013), 209–218  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. E. A. Davydov, “Polynomial integrals of motion in dilaton gravity theories”, Theoret. and Math. Phys., 183:1 (2015), 567–577  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. A. T. Filippov, “Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron”, Theoret. and Math. Phys., 188:1 (2016), 1069–1098  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Filippov T., “A Fresh View of Cosmological Models Describing Very Early Universe: General Solution of the Dynamical Equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 298–303  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:1499
    Full text:139
    References:55
    First page:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020