RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 164, Number 1, Pages 62–77 (Mi tmf6524)  

This article is cited in 3 scientific papers (total in 3 papers)

Study of the essential spectrum of a matrix operator

T. H. Rasulov

Bukhara State University, Bukhara, Uzbekistan

Abstract: We consider a matrix operator $H$ corresponding to a system with a nonconserved finite number of particles on a lattice. We describe the structure of the essential spectrum of the operator $H$ and prove that the essential spectrum is a union of at most four intervals.

Keywords: matrix operator, system with a nonconserved finite number of particles, Fock space, generalized Friedrichs model, essential spectrum, eigenvalue

DOI: https://doi.org/10.4213/tmf6524

Full text: PDF file (440 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 164:1, 883–895

Bibliographic databases:

Document Type: Article
Received: 01.12.2009
Revised: 31.01.2010

Citation: T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, TMF, 164:1 (2010), 62–77; Theoret. and Math. Phys., 164:1 (2010), 883–895

Citation in format AMSBIB
\Bibitem{Ras10}
\by T.~H.~Rasulov
\paper Study of the~essential spectrum of a~matrix operator
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 62--77
\mathnet{http://mi.mathnet.ru/tmf6524}
\crossref{https://doi.org/10.4213/tmf6524}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..883R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 883--895
\crossref{https://doi.org/10.1007/s11232-010-0070-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280650600004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955289798}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6524
  • https://doi.org/10.4213/tmf6524
  • http://mi.mathnet.ru/eng/tmf/v164/i1/p62

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77  mathnet
    2. G. R. Yodgorov, F. Ismail, Z. I. Muminov, “A description of the location and structure of the essential spectrum of a model operator in a subspace of a Fock space”, Sb. Math., 205:12 (2014), 1761–1774  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61  mathscinet  zmath  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:239
    Full text:47
    References:54
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019