RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 164, Number 1, Pages 157–171 (Mi tmf6530)  

This article is cited in 3 scientific papers (total in 3 papers)

Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field

V. N. Rodionova, G. A. Kravtsovab, A. M. Mandel'c

a Russian State Geological Prospecting University, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Aviation Institute (State Technical University), Moscow, Russia

Abstract: We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional $\delta$-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.

Keywords: bound electron, magnetic field, current probability distribution

DOI: https://doi.org/10.4213/tmf6530

Full text: PDF file (703 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 164:1, 960–971

Bibliographic databases:

Received: 18.11.2009

Citation: V. N. Rodionov, G. A. Kravtsova, A. M. Mandel', “Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field”, TMF, 164:1 (2010), 157–171; Theoret. and Math. Phys., 164:1 (2010), 960–971

Citation in format AMSBIB
\Bibitem{RodKraMan10}
\by V.~N.~Rodionov, G.~A.~Kravtsova, A.~M.~Mandel'
\paper Wave function and the~probability current distribution for a~bound electron moving in a~uniform magnetic field
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 157--171
\mathnet{http://mi.mathnet.ru/tmf6530}
\crossref{https://doi.org/10.4213/tmf6530}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..960R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 960--971
\crossref{https://doi.org/10.1007/s11232-010-0076-5}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280650600010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955286006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6530
  • https://doi.org/10.4213/tmf6530
  • http://mi.mathnet.ru/eng/tmf/v164/i1/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rodionov V.N., Kravtsova G.A., “The Energy Level Shifts, Wave Functions and the Probability Current Distributions for the Bound Scalar and Spinor Particles Moving in a Uniform Magnetic Field”, Physics of Particles and Nuclei, 42:6 (2011), 895–910  crossref  adsnasa  isi  scopus
    2. Quantum Electron., 48:1 (2018), 49–56  mathnet  crossref  isi  elib
    3. Mandel' A. M. Oshurko V.B. Solomakho G.I. Solomakho K.G. Veretin V.S., “Regularization of One-Electron Quasi-Steady States in Ideal Quantum Dots in the Electric Field”, J. Commun. Technol. Electron., 63:2 (2018), 173–179  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:488
    Full text:107
    References:51
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019