RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2010, Volume 164, Number 3, Pages 333–353 (Mi tmf6543)  

This article is cited in 3 scientific papers (total in 3 papers)

Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles

P. G. Grinevicha, A. E. Mironovb, S. P. Novikovc

a Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
b Sobolev Institute for Mathematics, Siberian Branch, RAS, Novosibirsk, Russia
c University of Maryland, College Park, USA

Abstract: We study the manifold of complex Bloch–Floquet eigenfunctions for the zero level of a two-dimensional nonrelativistic Pauli operator describing the propagation of a charged particle in a periodic magnetic field with zero flux through the elementary cell and a zero electric field. We study this manifold in full detail for a wide class of algebraic-geometric operators. In the nonzero flux case, the Pauli operator ground state was found by Aharonov and Casher for fields rapidly decreasing at infinity and by Dubrovin and Novikov for periodic fields. Algebraic-geometric operators were not previously known for fields with nonzero flux because the complex continuation of “magnetic” Bloch–Floquet eigenfunctions behaves wildly at infinity. We construct several nonsingular algebraic-geometric periodic fields (with zero flux through the elementary cell) corresponding to complex Riemann surfaces of genus zero. For higher genera, we construct periodic operators with interesting magnetic fields and with the Aharonov–Bohm phenomenon. Algebraic-geometric solutions of genus zero also generate soliton-like nonsingular magnetic fields whose flux through a disc of radius $R$ is proportional to $R$ (and diverges slowly as $R\to\infty$). In this case, we find the most interesting ground states in the Hilbert space $L_2(\mathbb R^2)$.

Keywords: two-dimensional Pauli operator, one-energy problem, algebraic-geometric solution, nonzero magnetic flux, ground state, Bloch–Floquet manifold, Aharonov–Bohm effect

DOI: https://doi.org/10.4213/tmf6543

Full text: PDF file (638 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2010, 164:3, 1110–1127

Bibliographic databases:

Document Type: Article

Citation: P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, TMF, 164:3 (2010), 333–353; Theoret. and Math. Phys., 164:3 (2010), 1110–1127

Citation in format AMSBIB
\Bibitem{GriMirNov10}
\by P.~G.~Grinevich, A.~E.~Mironov, S.~P.~Novikov
\paper Zero level of a~purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 333--353
\mathnet{http://mi.mathnet.ru/tmf6543}
\crossref{https://doi.org/10.4213/tmf6543}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1110G}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1110--1127
\crossref{https://doi.org/10.1007/s11232-010-0089-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000282695500002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957977674}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6543
  • https://doi.org/10.4213/tmf6543
  • http://mi.mathnet.ru/eng/tmf/v164/i3/p333

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum

    This publication is cited in the following articles:
    1. I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Grinevich P.G., Mironov A.E., Novikov S.P., “Two-dimensional Pauli operator in a magnetic field”, Low Temperature Physics, 37:10 (2011), 829–833  crossref  adsnasa  isi  elib  scopus
    3. P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:592
    Full text:82
    References:56
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019