|
This article is cited in 3 scientific papers (total in 3 papers)
Some remarks on the Ercolani–Sinha construction of monopoles
H. W. Bradena, V. Z. Ènol'skiibc a School of Mathematics, Edinburgh University, Edinburgh, UK
b Institute of Magnetism, National Academy of Sciences
of Ukraine, Kiev, Ukraine
c Hanse-Wissenschaftskolleg
(Institute for Advanced Study), Delmenhorst, Germany
Abstract:
We develop the Ercolani–Sinha construction of $SU(2)$ monopoles, which provides a gauge transform of the Nahm data.
Keywords:
Yang–Mills field, non-Abelian monopole, theta function, completely integrable equation, algebraic curve
DOI:
https://doi.org/10.4213/tmf6585
Full text:
PDF file (731 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2010, 165:3, 1567–1597
Bibliographic databases:
Citation:
H. W. Braden, V. Z. Ènol'skii, “Some remarks on the Ercolani–Sinha construction of monopoles”, TMF, 165:3 (2010), 389–425; Theoret. and Math. Phys., 165:3 (2010), 1567–1597
Citation in format AMSBIB
\Bibitem{BraEno10}
\by H.~W.~Braden, V.~Z.~\`Enol'skii
\paper Some remarks on the~Ercolani--Sinha~construction of monopoles
\jour TMF
\yr 2010
\vol 165
\issue 3
\pages 389--425
\mathnet{http://mi.mathnet.ru/tmf6585}
\crossref{https://doi.org/10.4213/tmf6585}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 165
\issue 3
\pages 1567--1597
\crossref{https://doi.org/10.1007/s11232-010-0131-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288427000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951712198}
Linking options:
http://mi.mathnet.ru/eng/tmf6585https://doi.org/10.4213/tmf6585 http://mi.mathnet.ru/eng/tmf/v165/i3/p389
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Braden H.W., Enolski V.Z., “On the Existence of Non-Abelian Monopoles: the Algebro-Geometric Approach”, XXIX Workshop on Geometric Methods in Physics, AIP Conference Proceedings, 1307, 2010, 53–67
-
Braden H.W., “Cyclic Monopoles, Affine Toda and Spectral Curves”, Comm Math Phys, 308:2 (2011), 303–323
-
Braden H.W., Enolski V.Z., “The Construction of Monopoles”, Commun. Math. Phys., 362:2 (2018), 547–570
|
Number of views: |
This page: | 365 | Full text: | 108 | References: | 33 | First page: | 10 |
|