Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 166, Number 1, Pages 3–27 (Mi tmf6592)  

This article is cited in 72 scientific papers (total in 72 papers)

Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory

A. D. Mironovab, A. Yu. Morozovb, S. M. Natanzoncd

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c Higher School of Economics, Moscow, Russia
d Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia

Abstract: We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type. These operators have two alternative descriptions: (1) the $GL$ characters are their eigenfunctions and the symmetric group characters are their eigenvalues; (2) they can be represented as $W$-type differential operators (in particular, acting on the time variables in the Hurwitz–Kontsevich $\tau$-function). The operators have the simplest form when expressed in terms of the Miwa variables. They form an important commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points of the branched covering.

Keywords: matrix model, Hurwitz number, symmetric group character

DOI: https://doi.org/10.4213/tmf6592

Full text: PDF file (1138 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 166:1, 1–22

Bibliographic databases:

Received: 07.06.2010

Citation: A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory”, TMF, 166:1 (2011), 3–27; Theoret. and Math. Phys., 166:1 (2011), 1–22

Citation in format AMSBIB
\Bibitem{MirMorNat11}
\by A.~D.~Mironov, A.~Yu.~Morozov, S.~M.~Natanzon
\paper Complete set of cut-and-join operators in the~Hurwitz--Kontsevich theory
\jour TMF
\yr 2011
\vol 166
\issue 1
\pages 3--27
\mathnet{http://mi.mathnet.ru/tmf6592}
\crossref{https://doi.org/10.4213/tmf6592}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3165775}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166....1M}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1007/s11232-011-0001-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000287245500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79951473365}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6592
  • https://doi.org/10.4213/tmf6592
  • http://mi.mathnet.ru/eng/tmf/v166/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mishnyakov V. Sleptsov A. Tselousov N., “A New Symmetry of the Colored Alexander Polynomial”, Ann. Henri Poincare  crossref  isi
    2. Brown T.W., “Complex matrix model duality”, Phys. Rev. D, 83:8 (2011), 085002  crossref  adsnasa  isi  scopus
    3. Mironov A., Morozov A., Natanzon S., “Integrability properties of Hurwitz partition functions. II. Multiplication of cut-and-join operators and WDVV equations”, J. High Energy Phys., 2011, no. 11, 097  crossref  mathscinet  zmath  isi  elib  scopus
    4. Alexandrov A., Mironov A., Morozov A., Natanzon S., “Integrability of Hurwitz partition functions”, J. Phys. A, 45:4 (2012), 045209  crossref  mathscinet  zmath  adsnasa  isi  scopus
    5. D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, “Three-dimensional extensions of the Alday–Gaiotto–Tachikawa relation”, Theoret. and Math. Phys., 172:1 (2012), 939–962  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    6. JETP Letters, 95:11 (2012), 586–593  mathnet  crossref  isi  elib  elib
    7. A. Yu. Morozov, “Challenges of $\beta$-deformation”, Theoret. and Math. Phys., 173:1 (2012), 1417–1437  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    8. Mironov A. Morozov A., “Equations on Knot Polynomials and 3D/5D Duality”, Sixth International School on Field Theory and Gravitation-2012, AIP Conf. Proc., 1483, ed. Rodrigues W. Kerner R. Pires G. Pinheiro C., Amer. Inst. Physics, 2012, 189–211  crossref  adsnasa  isi  scopus
    9. Mironov A., Morozov A., Shakirov Sh., “Torus HOMFLYPT as the Hall-Littlewood polynomials”, J. Phys. A, 45:35 (2012), 355202  crossref  mathscinet  zmath  isi  elib  scopus
    10. Mironov A., Morozov A., Morozov And., “Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid”, J. High Energy Phys., 2012, no. 3, 034  crossref  mathscinet  zmath  isi  scopus
    11. Mironov A., Morozov A., Shakirov Sh., Sleptsov A., “Interplay between Macdonald and Hall-Littlewood expansions of extended torus superpolynomials”, J. High Energy Phys., 2012, no. 5, 070  crossref  mathscinet  zmath  isi  scopus
    12. A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, “Genus expansion of HOMFLY polynomials”, Theoret. and Math. Phys., 177:2 (2013), 1435–1470  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. Mironov A., Morozov A., Natanzon S., “Cardy-Frobenius Extension of the Algebra of Cut-and-Join Operators”, J. Geom. Phys., 73 (2013), 243–251  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Mironov A. Morozov A. Sleptsov A., “On Genus Expansion of Knot Polynomials and Hidden Structure of Hurwitz Tau-Functions”, Eur. Phys. J. C, 73:7 (2013), 2492  crossref  adsnasa  isi  scopus
    15. Dunin-Barkowski P. Mironov A. Morozov A. Sleptsov A. Smirnov A., “Superpolynomials for Torus Knots From Evolution Induced by Cut-and-Join Operators”, J. High Energy Phys., 2013, no. 3, 021  crossref  mathscinet  zmath  isi  elib  scopus
    16. Itoyama H. Mironov A. Morozov A. Morozov A.N.D., “Eigenvalue Hypothesis for Racah Matrices and Homfly Polynomials for 3-Strand Knots in Any Symmetric and Antisymmetric Representations”, Int. J. Mod. Phys. A, 28:3-4, SI (2013), 1340009  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    17. Mironov A., Morozov A., Natanzon S., “A Hurwitz Theory Avatar of Open-Closed Strings”, Eur. Phys. J. C, 73:2 (2013), 2324  crossref  adsnasa  isi  scopus
    18. Dolotin V. Morozov A., “Introduction to Khovanov Homologies I. Unreduced Jones Superpolynomial”, J. High Energy Phys., 2013, no. 1, 065  crossref  mathscinet  zmath  isi  elib  scopus
    19. JETP Letters, 99:2 (2014), 109–113  mathnet  crossref  crossref  isi  elib  elib
    20. A. Alexandrov, “From Hurwitz numbers to Kontsevich–Witten tau-function: a connection by Virasoro operators”, Lett. Math. Phys., 104:1 (2014), 75–87  crossref  mathscinet  zmath  adsnasa  isi  scopus
    21. V. Dolotin, A. Morozov, “Introduction to Khovanov homologies. III. A new and simple tensor-algebra construction of Khovanov-Rozansky invariants”, Nuclear Phys. B, 878 (2014), 12–81  crossref  mathscinet  zmath  adsnasa  isi
    22. JETP Letters, 100:4 (2014), 271–278  mathnet  crossref  crossref  isi  elib  elib
    23. Mironov A., Morozov A., Sleptsov A., Smirnov A., “On Genus Expansion of Superpolynomials”, Nucl. Phys. B, 889 (2014), 757–777  crossref  mathscinet  zmath  adsnasa  isi  scopus
    24. Sleptsov A., “Hidden Structures of Knot Invariants”, Int. J. Mod. Phys. A, 29:29 (2014), 1430063  crossref  mathscinet  zmath  adsnasa  isi  scopus
    25. Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080  crossref  mathscinet  zmath  isi  scopus
    26. Mironov A. Morozov A. Morozov A., “On Colored Homfly Polynomials For Twist Knots”, Mod. Phys. Lett. A, 29:34 (2014), 1450183  crossref  zmath  adsnasa  isi  scopus
    27. Mironov A., Morozov A., Natanzon S., “Infinite-Dimensional Topological Field Theories From Hurwitz Numbers”, J. Knot Theory Ramifications, 23:6 (2014), 1450033  crossref  mathscinet  zmath  isi  scopus
    28. Anokhina A. Mironov A. Morozov A. Morozov A., “Knot Polynomials in the First Non-Symmetric Representation”, Nucl. Phys. B, 882 (2014), 171–194  crossref  mathscinet  zmath  adsnasa  isi  scopus
    29. Morozov A. Smirnov A., “Towards the Proof of AGT Relations With the Help of the Generalized Jack Polynomials”, Lett. Math. Phys., 104:5 (2014), 585–612  crossref  mathscinet  zmath  adsnasa  isi  scopus
    30. H. Itoyama, A. D. Mironov, A. Yu. Morozov, “Matching branches of a nonperturbative conformal block at its singularity divisor”, Theoret. and Math. Phys., 184:1 (2015), 891–923  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    31. Galakhov D., Melnikov D., Mironov A., Morozov A., “Knot Invariants From Virasoro Related Representation and Pretzel Knots”, Nucl. Phys. B, 899 (2015), 194–228  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    32. Mironov A., Morozov A., “Towards Effective Topological Field Theory For Knots”, Nucl. Phys. B, 899 (2015), 395–413  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    33. Harnad J., Orlov A.Yu., “Hypergeometric Tau-Functions, Hurwitz Numbers and Enumeration of Paths”, Commun. Math. Phys., 338:1 (2015), 267–284  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    34. Mironov A. Morozov A. Morozov A. Ramadevi P. Singh V.K., “Colored Homfly Polynomials of Knots Presented as Double Fat Diagrams”, J. High Energy Phys., 2015, no. 7, 109  crossref  mathscinet  zmath  isi  scopus
    35. Mironov A. Morozov A. Sleptsov A., “Colored Homfly Polynomials For the Pretzel Knots and Links”, J. High Energy Phys., 2015, no. 7, 069  crossref  mathscinet  isi  scopus
    36. Kononov Ya., Morozov A., “On factorization of generalized Macdonald polynomials”, Eur. Phys. J. C, 76:8 (2016), 424  crossref  isi  scopus
    37. Prochazka T., “$ \mathcal{W} $-symmetry, topological vertex and affine Yangian”, J. High Energy Phys., 2016, no. 10, 077  crossref  mathscinet  isi  elib  scopus
    38. Awata H. Kanno H. Mironov A. Morozov A. Morozov A. Ohkubo Yu. Zenkevich Y., “Toric Calabi-Yau threefolds as quantum integrable systems. $\mathcal{R}$-matrix and $\mathcal{RTT}$ relations”, J. High Energy Phys., 2016, no. 10, 047  crossref  mathscinet  isi  elib  scopus
    39. Mironov A. Morozov A. Morozov A. Sleptsov A., “HOMFLY polynomials in representation [3, 1] for 3-strand braids”, J. High Energy Phys., 2016, no. 9, 134  crossref  mathscinet  zmath  isi  scopus
    40. Zheng Q., “Genus expanded cut-and-join operators and generalized Hurwtiz numbers”, Acta. Math. Sin.-English Ser., 32:9 (2016), 1089–1098  crossref  mathscinet  zmath  isi  scopus
    41. Morozov A.A., “The properties of conformal blocks, the AGT hypothesis, and knot polynomials”, Phys. Part. Nuclei, 47:5 (2016), 775–837  crossref  mathscinet  isi  elib  scopus
    42. Smirnov A., “On the Instanton R-matrix”, Commun. Math. Phys., 345:3 (2016), 703–740  crossref  mathscinet  zmath  isi  elib  scopus
    43. Zheng Q., “Shifted genus expanded W algebra and shifted Hurwitz numbers”, J. Math. Phys., 57:5 (2016), 051705  crossref  mathscinet  zmath  isi  elib  scopus
    44. Mironov A. Mkrtchyan R. Morozov A., “On universal knot polynomials”, J. High Energy Phys., 2016, no. 2, 078  crossref  mathscinet  isi  scopus
    45. Mironov A. Morozov A. Morozov A. Ramadevi P. Singh V.K. Sleptsov A., “Tabulating knot polynomials for arborescent knots”, J. Phys. A-Math. Theor., 50:8 (2017), 085201  crossref  mathscinet  zmath  isi  scopus
    46. A. Yu. Morozov, A. A. Morozov, A. V. Popolitov, “Matrix model and dimensions at hypercube vertices”, Theoret. and Math. Phys., 192:1 (2017), 1039–1079  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    47. A. Yu. Orlov, “Hurwitz numbers and products of random matrices”, Theoret. and Math. Phys., 192:3 (2017), 1282–1323  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    48. Mironov A. Morozov A. Morozov A. Ramadevi P. Singh V.K. Sleptsov A., “Checks of Integrality Properties in Topological Strings”, J. High Energy Phys., 2017, no. 8, 139  crossref  mathscinet  zmath  isi  scopus
    49. Itoyama H. Mironov A. Morozov A., “Ward Identities and Combinatorics of Rainbow Tensor Models”, J. High Energy Phys., 2017, no. 6, 115  crossref  mathscinet  zmath  isi  scopus
    50. Natanzon S.M. Orlov A.Yu., “BKP and Projective Hurwitz Numbers”, Lett. Math. Phys., 107:6 (2017), 1065–1109  crossref  mathscinet  zmath  isi  scopus
    51. Mironov A., Morozov A., “On the Complete Perturbative Solution of One-Matrix Models”, Phys. Lett. B, 771 (2017), 503–507  crossref  zmath  isi  scopus
    52. Alexandrov A., Chapuy G., Eynard B., Harnad J., “Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion”, Commun. Math. Phys., 360:2 (2018), 777–826  crossref  mathscinet  zmath  isi  scopus
    53. Itoyama H. Mironov A. Morozov A., “Cut and Join Operator Ring in Tensor Models”, Nucl. Phys. B, 932 (2018), 52–118  crossref  mathscinet  zmath  isi  scopus
    54. Mironov A. Morozov A., “Sum Rules For Characters From Character-Preservation Property of Matrix Models”, J. High Energy Phys., 2018, no. 8, 163  crossref  zmath  isi  scopus
    55. Morozov A., “An Analogue of Schur Functions For the Plane Partitions”, Phys. Lett. B, 785 (2018), 175–183  crossref  zmath  isi  scopus
    56. Itoyama H. Mironov A. Morozov A., “From Kronecker to Tableau Pseudo-Characters in Tensor Models”, Phys. Lett. B, 788 (2019), 76–81  crossref  zmath  isi  scopus
    57. Morozov A., “On W-Representations of Beta- and Q, T-Deformed Matrix Models”, Phys. Lett. B, 792 (2019), 205–213  crossref  mathscinet  isi  scopus
    58. A. Yu. Morozov, “Cut-and-join operators and Macdonald polynomials from the 3-Schur functions”, Theoret. and Math. Phys., 200:1 (2019), 938–965  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    59. Itoyama H., Mironov A., Morozov A., “Tensorial Generalization of Characters”, J. High Energy Phys., 2019, no. 12, 127  crossref  mathscinet  isi
    60. Dunin-Barkowski P. Popolitov A. Shadrin S. Sleptsov A., “Combinatorial Structure of Colored Homfly-Pt Polynomials For Torus Knots”, Commun. Number Theory Phys., 13:4 (2019), 763–826  crossref  mathscinet  isi
    61. S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194  mathnet  crossref  crossref  isi  elib
    62. Amburg N. Orlov A. Vasiliev D., “On Products of Random Matrices”, Entropy, 22:9 (2020), 972  crossref  mathscinet  isi
    63. Mironov A., Morozov A., “On Generalized Macdonald Polynomials”, J. High Energy Phys., 2020, no. 1, 110  crossref  mathscinet  isi
    64. Sun H., “Degree of the W-Operator and Noncrossing Partitions”, Bull. Aust. Math. Soc., 101:2 (2020), 186–200  crossref  mathscinet  isi
    65. Mironov A. Morozov A. Natanzon S., “Cut-and-Join Structure and Integrability For Spin Hurwitz Numbers”, Eur. Phys. J. C, 80:2 (2020), 97  crossref  isi
    66. Mironov A., Morozov A., “On Hamiltonians For Kerov Functions”, Eur. Phys. J. C, 80:3 (2020), 277  crossref  isi
    67. Itoyama H. Mironov A. Morozov A., “Complete Solution to Gaussian Tensor Model and Its Integrable Properties”, Phys. Lett. B, 802 (2020), 135237  crossref  mathscinet  isi
    68. Mironov A., Morozov A., “Kerov Functions Revisited”, J. Geom. Phys., 150 (2020), 103608  crossref  mathscinet  isi
    69. Mironov A., Morozov A., “Hook Variables: Cut-and-Join Operators and Tau-Functions”, Phys. Lett. B, 804 (2020), 135362  crossref  mathscinet  isi
    70. Morozov A., Popolitov A., Shakirov Sh., “Quantization of Harer-Zagier Formulas”, Phys. Lett. B, 811 (2020), 135932  crossref  mathscinet  isi
    71. Bishler L. Dhara S. Grigoryev T. Mironov A. Morozov A. Morozov A. Ramadevi P. Singh V.K. Sleptsov A., “Distinguishing Mutant Knots”, J. Geom. Phys., 159 (2021), 103928  crossref  mathscinet  isi
    72. A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  mathnet  crossref  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:832
    Full text:172
    References:59
    First page:23

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021