RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 166, Number 2, Pages 245–260 (Mi tmf6606)  

This article is cited in 4 scientific papers (total in 4 papers)

Supergroup approach to the Hubbard model

V. M. Zharkova, V. S. Kirchanovb

a Natural Sciences Institute, Perm State University, Perm, Russia
b Perm State University for Technology, Perm, Russia

Abstract: Based on the revealed hidden supergroup structure, we develop a new approach to the Hubbard model. We reveal a relation of even Hubbard operators to the spinor representation of the generators of the rotation group of four-dimensional spaces. We propose a procedure for constructing a matrix representation of translation generators, yielding a curved space on which dynamic superfields are defined. We construct a new deformed nonlinear superalgebra for the regime of spinless Hubbard model fermions in the case of large on-site repulsion and evaluate the effective functional for spinless fermions.

Keywords: Hubbard model, deformed nonlinear superalgebra, effective functional

DOI: https://doi.org/10.4213/tmf6606

Full text: PDF file (458 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 166:2, 210–223

Bibliographic databases:

Received: 16.06.2010

Citation: V. M. Zharkov, V. S. Kirchanov, “Supergroup approach to the Hubbard model”, TMF, 166:2 (2011), 245–260; Theoret. and Math. Phys., 166:2 (2011), 210–223

Citation in format AMSBIB
\Bibitem{ZhaKir11}
\by V.~M.~Zharkov, V.~S.~Kirchanov
\paper Supergroup approach to the~Hubbard model
\jour TMF
\yr 2011
\vol 166
\issue 2
\pages 245--260
\mathnet{http://mi.mathnet.ru/tmf6606}
\crossref{https://doi.org/10.4213/tmf6606}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3165807}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..210Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 2
\pages 210--223
\crossref{https://doi.org/10.1007/s11232-011-0015-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000289209500004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953675728}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6606
  • https://doi.org/10.4213/tmf6606
  • http://mi.mathnet.ru/eng/tmf/v166/i2/p245

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kirchanov V.S., Zharkov V.M., “Effective functional for the supercoherent state of spinless algebra in the Hubbard model”, Russian Physics Journal, 54:6 (2011), 658–667  crossref  mathscinet  zmath  zmath  adsnasa  isi  isi  elib  elib  scopus
    2. Zharkov V.M., “Ontologiya polevoi formulirovki modeli Khabbarda. I: Superpolya i gruppy”, Vestnik Permskogo universiteta. Seriya: Informatsionnye sistemy i tekhnologii, 2011, no. 12, 15–18  elib
    3. V. M. Zharkov, “The functional integral in the Hubbard model”, Theoret. and Math. Phys., 172:3 (2012), 1300–1314  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. Zharkov V., “Description of conductivity steps in polymer and other materials by functions of $p$-adic argument”, Physica Status Solidi C: Current Topics in Solid State Physics, 9:5 (2012), 1219–1221  crossref  adsnasa  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:332
    Full text:79
    References:35
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020