Теоретическая и математическая физика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


ТМФ, 2011, том 167, номер 2, страницы 193–205 (Mi tmf6633)  

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Специальные лагранжевы слоения многообразия флагов $F^3$

Н. А. Тюринabc

a Объединенный институт ядерных исследований, Дубна, Московская обл., Россия
b Московский государственный университет путей сообщения (МИИТ), Москва, Россия
c Государственный университет – Высшая школа экономики, Москва, Россия

Аннотация: Предложена конструкция слоения на лагранжевы торы полного многообразия флагов в $\mathbb{C}^3$. В отличие от классического слоения, получаемого из системы Гельфанда–Цейтлина, предлагаемое слоение является специальным лагранжевым.

Ключевые слова: многообразие флагов, лагранжев тор, псевдоторическая структура, специальное лагранжево слоение

DOI: https://doi.org/10.4213/tmf6633

Полный текст: PDF файл (400 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Theoretical and Mathematical Physics, 2011, 167:2, 567–576

Реферативные базы данных:

Тип публикации: Статья
Поступило в редакцию: 01.08.2010

Образец цитирования: Н. А. Тюрин, “Специальные лагранжевы слоения многообразия флагов $F^3$”, ТМФ, 167:2 (2011), 193–205; Theoret. and Math. Phys., 167:2 (2011), 567–576

Цитирование в формате AMSBIB
\RBibitem{Tyu11}
\by Н.~А.~Тюрин
\paper Специальные лагранжевы слоения многообразия флагов~$F^3$
\jour ТМФ
\yr 2011
\vol 167
\issue 2
\pages 193--205
\mathnet{http://mi.mathnet.ru/tmf6633}
\crossref{https://doi.org/10.4213/tmf6633}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3166364}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..567T}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 567--576
\crossref{https://doi.org/10.1007/s11232-011-0042-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000291480900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958218678}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/tmf6633
  • https://doi.org/10.4213/tmf6633
  • http://mi.mathnet.ru/rus/tmf/v167/i2/p193

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. С. А. Белев, Н. А. Тюрин, “Подъемы лагранжевых торов”, Матем. заметки, 91:5 (2012), 784–786  mathnet  crossref  mathscinet  elib; S. A. Belev, N. A. Tyurin, “Lifts of Lagrangian Tori”, Math. Notes, 91:5 (2012), 735–737  crossref  isi  elib
    2. Н. А. Тюрин, “Псевдоторические структуры и лагранжева сфера в многообразии флагов $F^3$”, Матем. заметки, 96:3 (2014), 476–479  mathnet  crossref  mathscinet  zmath  elib; N. A. Tyurin, “Pseudotoric Structures and Lagrangian Spheres in the Flag Variety $F^3$”, Math. Notes, 96:3 (2014), 458–461  crossref  isi  elib
    3. Н. А. Тюрин, “Псевдоторические структуры на гиперплоском сечении торического многообразия”, ТМФ, 182:2 (2015), 195–212  mathnet  crossref  mathscinet  adsnasa  elib; N. A. Tyurin, “Pseudotoric structures on a hyperplane section of a toric manifold”, Theoret. and Math. Phys., 182:2 (2015), 159–172  crossref  isi
    4. Н. А. Тюрин, “О лагранжевых сферах в многообразии флагов $F^3$”, Матем. заметки, 98:2 (2015), 314–317  mathnet  crossref  mathscinet  elib; N. A. Tyurin, “On Lagrangian Spheres in the Flag Variety $F^3$”, Math. Notes, 98:2 (2015), 348–351  crossref  isi
    5. Н. А. Тюрин, “Специальные бор–зоммерфельдовы лагранжевы подмногообразия”, Изв. РАН. Сер. матем., 80:6 (2016), 274–293  mathnet  crossref  mathscinet  adsnasa  elib; N. A. Tyurin, “Special Bohr–Sommerfeld Lagrangian submanifolds”, Izv. Math., 80:6 (2016), 1257–1274  crossref  isi
    6. Н. А. Тюрин, “Псевдоторические структуры: лагранжевы подмногообразия и лагранжевы слоения”, УМН, 72:3(435) (2017), 131–169  mathnet  crossref  mathscinet  adsnasa  elib; N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russian Math. Surveys, 72:3 (2017), 513–546  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Просмотров:
    Эта страница:310
    Полный текст:140
    Литература:52
    Первая стр.:20
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2022