RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 167, Number 2, Pages 206–213 (Mi tmf6634)  

This article is cited in 2 scientific papers (total in 2 papers)

Destruction of solutions of wave equations in systems with distributed parameters

M. O. Korpusov

Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider two initial boundary value problems on an interval with homogeneous Dirichlet conditions. These problems were proposed by M. I. Rabinovich and D. I. Trubetskov and are given by nonlinear fourth-order Sobolev-type equations. We prove the local-in-time existence of a strong generalized solution of one problem, and for both problems, we obtain sufficient conditions for the destruction of their strong generalized solutions in a finite time.

Keywords: destruction, nonlinear analysis

DOI: https://doi.org/10.4213/tmf6634

Full text: PDF file (366 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 167:2, 577–583

Bibliographic databases:

Received: 12.10.2010

Citation: M. O. Korpusov, “Destruction of solutions of wave equations in systems with distributed parameters”, TMF, 167:2 (2011), 206–213; Theoret. and Math. Phys., 167:2 (2011), 577–583

Citation in format AMSBIB
\Bibitem{Kor11}
\by M.~O.~Korpusov
\paper Destruction of solutions of wave equations in systems with distributed parameters
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 206--213
\mathnet{http://mi.mathnet.ru/tmf6634}
\crossref{https://doi.org/10.4213/tmf6634}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3166365}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..577K}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 577--583
\crossref{https://doi.org/10.1007/s11232-011-0043-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000291480900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958238863}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6634
  • https://doi.org/10.4213/tmf6634
  • http://mi.mathnet.ru/eng/tmf/v167/i2/p206

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501  mathnet  crossref  crossref  isi  elib
    2. M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959  mathnet  crossref  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:351
    Full text:129
    References:48
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021