RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 167, Number 2, Pages 264–272 (Mi tmf6638)  

This article is cited in 3 scientific papers (total in 3 papers)

Wigner functions for the Landau problem in noncommutative quantum mechanics

S. Dulata, Kang Lib, Jianhua Wangc

a School of Physics Science and Technology, Xinjiang University, Urumqi, China
b Department of Physics, Hangzhou Normal University, Hangzhou, China
c Department of Physics, Shaanxi University of Technology, Hanzhong, China

Abstract: We study the Wigner function in noncommutative quantum mechanics. By solving the time-independent Schrödinger equation on both a noncommutative space and a noncommutative phase space, we obtain the Wigner function for the Landau problem on those spaces.

Keywords: Wigner function, noncommutative quantum mechanics, Landau problem

DOI: https://doi.org/10.4213/tmf6638

Full text: PDF file (367 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 167:2, 628–635

Bibliographic databases:

Received: 26.08.2010
Revised: 27.10.2010

Citation: S. Dulat, Kang Li, Jianhua Wang, “Wigner functions for the Landau problem in noncommutative quantum mechanics”, TMF, 167:2 (2011), 264–272; Theoret. and Math. Phys., 167:2 (2011), 628–635

Citation in format AMSBIB
\Bibitem{DulLiWan11}
\by S.~Dulat, Kang~Li, Jianhua~Wang
\paper Wigner functions for the~Landau problem in noncommutative quantum mechanics
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 264--272
\mathnet{http://mi.mathnet.ru/tmf6638}
\crossref{https://doi.org/10.4213/tmf6638}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3166369}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..628D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 628--635
\crossref{https://doi.org/10.1007/s11232-011-0047-5}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000291480900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958184779}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6638
  • https://doi.org/10.4213/tmf6638
  • http://mi.mathnet.ru/eng/tmf/v167/i2/p264

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Nizamidin H., Yakup R., Dulat S., Hekim M., “The Wigner Functions For Neutral Particles in An External Electromagnetic Field in Noncommutative Quantum Mechanics”, Int. J. Theor. Phys., 54:2 (2015), 561–571  crossref  zmath  isi  scopus
    2. Mamat J., Dulat S., Mamatabdulla H., “Landau-like Atomic Problem on a Non-commutative Phase Space”, Int. J. Theor. Phys., 55:6 (2016), 2913–2918  crossref  zmath  isi  scopus
    3. Hekim M., Anwar A., Wang J., “Quantum Phase for an Electric Multipole Moment in Noncommutative Quantum Mechanics”, Int. J. Theor. Phys., 55:7 (2016), 3226–3233  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:346
    Full text:92
    References:56
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021