RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 168, Number 1, Pages 49–64 (Mi tmf6663)  

This article is cited in 6 scientific papers (total in 6 papers)

Symmetry analysis and exact solutions of some Ostrovsky equations

M. L. Gandarias, M. S. Bruzón

Departamento de Matematicas, Universidad de Cadiz, Cadiz, Spain

Abstract: We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition”.

Keywords: classical symmetry, exact solution, partial differential equation

DOI: https://doi.org/10.4213/tmf6663

Full text: PDF file (1022 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 168:1, 898–911

Bibliographic databases:


Citation: M. L. Gandarias, M. S. Bruzón, “Symmetry analysis and exact solutions of some Ostrovsky equations”, TMF, 168:1 (2011), 49–64; Theoret. and Math. Phys., 168:1 (2011), 898–911

Citation in format AMSBIB
\Bibitem{GanBru11}
\by M.~L.~Gandarias, M.~S.~Bruz\'on
\paper Symmetry analysis and exact solutions of some Ostrovsky equations
\jour TMF
\yr 2011
\vol 168
\issue 1
\pages 49--64
\mathnet{http://mi.mathnet.ru/tmf6663}
\crossref{https://doi.org/10.4213/tmf6663}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2021731}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 168
\issue 1
\pages 898--911
\crossref{https://doi.org/10.1007/s11232-011-0073-3}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961163722}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6663
  • https://doi.org/10.4213/tmf6663
  • http://mi.mathnet.ru/eng/tmf/v168/i1/p49

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Hashemi M.S., Nucci M.C., Abbasbandy S., “Group Analysis of the Modified Generalized Vakhnenko Equation”, Commun. Nonlinear Sci. Numer. Simul., 18:4 (2013), 867–877  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Kaur L., Gupta R.K., “Some Invariant Solutions of Field Equations With Axial Symmetry For Empty Space Containing An Electrostatic Field”, Appl. Math. Comput., 231 (2014), 560–565  crossref  mathscinet  zmath  isi  scopus
    3. Najafi R. Bahrami F. Hashemi M.S., “Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations”, Nonlinear Dyn., 87:3 (2017), 1785–1796  crossref  mathscinet  zmath  isi  scopus
    4. A. V. Bochkarev, A. I. Zemlyanukhin, “The geometric series method for constructing exact solutions to nonlinear evolution equations”, Comput. Math. Math. Phys., 57:7 (2017), 1111–1123  mathnet  crossref  crossref  isi  elib
    5. Bahrami F. Najafi R. Hashemi M.S., “On the Invariant Solutions of Space/Time-Fractional Diffusion Equations”, Indian J. Phys., 91:12 (2017), 1571–1579  crossref  isi  scopus
    6. Bruzon M.S., Recio E., de la Rosa R., Gandarias M.L., “Local Conservation Laws, Symmetries, and Exact Solutions For a Kudryashov-Sinelshchikov Equation”, Math. Meth. Appl. Sci., 41:4 (2018), 1631–1641  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:377
    Full text:116
    References:25
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019