Teoreticheskaya i Matematicheskaya Fizika
General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 2011, Volume 169, Number 1, Pages 124–136 (Mi tmf6714)  

This article is cited in 17 scientific papers (total in 17 papers)

Effects of turbulent transfer on critical behavior

N. V. Antonov, A. S. Kapustin, A. V. Malyshev

Saint Petersburg State University, St.~Petersburg, Russia

Abstract: Using the field theory renormalization group, we study the critical behavior of two systems subjected to turbulent mixing. The first system, described by the equilibrium model A, corresponds to the relaxational dynamics of a nonconserved order parameter. The second system is the strongly nonequilibrium reaction–diffusion system, known as the Gribov process or directed percolation process. The turbulent mixing is modeled by the stochastic Navier–Stokes equation with a random stirring force with the correlator $\propto\delta(t-t')p^{4-d-y}$, where $p$ is the wave number, $d$ is the space dimension, and $y$ is an arbitrary exponent. We show that the systems exhibit various types of critical behavior depending on the relation between $y$ and $d$. In addition to known regimes (original systems without mixing and a passively advected scalar field), we establish the existence of new strongly nonequilibrium universality classes and calculate the corresponding critical dimensions to the first order of the double expansion in $y$ and $\varepsilon=4-d$ (one-loop approximation).

Keywords: renormalization group, critical behavior, turbulent transfer

DOI: https://doi.org/10.4213/tmf6714

Full text: PDF file (474 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 169:1, 1470–1480

Bibliographic databases:

Received: 20.10.2011

Citation: N. V. Antonov, A. S. Kapustin, A. V. Malyshev, “Effects of turbulent transfer on critical behavior”, TMF, 169:1 (2011), 124–136; Theoret. and Math. Phys., 169:1 (2011), 1470–1480

Citation in format AMSBIB
\by N.~V.~Antonov, A.~S.~Kapustin, A.~V.~Malyshev
\paper Effects of turbulent transfer on critical behavior
\jour TMF
\yr 2011
\vol 169
\issue 1
\pages 124--136
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 1
\pages 1470--1480

Linking options:
  • http://mi.mathnet.ru/eng/tmf6714
  • https://doi.org/10.4213/tmf6714
  • http://mi.mathnet.ru/eng/tmf/v169/i1/p124

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sarkar N., Basu A., “Active-to-absorbing-state phase transition in the presence of fluctuating environments: Weak and strong dynamic scaling”, Phys. Rev. E, 86:2 (2012), 021122, 13 pp.  crossref  adsnasa  isi  elib  scopus
    2. Antonov N.V. Malyshev A.V., “Effects of turbulent mixing on critical behaviour: renormalization-group analysis of the Potts model”, J. Phys. A, 45:25 (2012), 255004, 21 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. M. Dančo, M. Gnatich, T. Lučivjanský, L. Mižišin, “Critical behavior of percolation process influenced by a random velocity field: One–loop approximation”, Theoret. and Math. Phys., 176:1 (2013), 898–905  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Sarkar N., Basu A., “Active To Absorbing State Phase Transition in the Presence of a Fluctuating Environment: Feedback and Universality”, J. Stat. Mech.-Theory Exp., 2014, P08016  crossref  mathscinet  isi  scopus
    5. N. V. Antonov, P. I. Kakin, “Random interface growth in a random environment: Renormalization group analysis of a simple model”, Theoret. and Math. Phys., 185:1 (2015), 1391–1407  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Sarkar N., “Active-To-Absorbing-State Phase Transition in An Evolving Population With Mutation”, Phys. Rev. E, 92:4 (2015), 042110  crossref  mathscinet  adsnasa  isi  elib  scopus
    7. Antonov N.V. Hnatic M. Kapustin A.S. Lucivjansky T. Mizisin L., “Directed Percolation Process in the Presence of Velocity Fluctuations: Effect of Compressibility and Finite Correlation Time”, Phys. Rev. E, 93:1 (2016), 012151  crossref  mathscinet  adsnasa  isi  scopus
    8. Hnatic M. Honkonen J. Lucivjansky T., “Advanced Field-Theoretical Methods in Stochastic Dynamics and Theory of Developed Turbulence”, Acta Phys. Slovaca, 66:2-3 (2016), 69–265  isi
    9. Antonov N.V., Kakin P.I., “Effects of Random Environment on a Self-Organized Critical System: Renormalization Group Analysis of a Continuous Model”, Mathematical Modeling and Computational Physics (MMCP 2015), EPJ Web of Conferences, 108, eds. Adam G., Busa J., Hnatic M., EDP Sciences, 2016, 02009  crossref  isi  scopus
    10. N. V. Antonov, M. Gnatich, A. S. Kapustin, T. Lučivjanský, L. Mižišin, “Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach”, Theoret. and Math. Phys., 190:3 (2017), 323–334  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. Antonov N.V. Kakin P.I., “Scaling in erosion of landscapes: renormalization group analysis of a model with turbulent mixing”, J. Phys. A-Math. Theor., 50:8 (2017), 085002  crossref  mathscinet  zmath  isi  scopus
    12. Antonov N.V. Hnatich M. Kapustin A.S. Lucivjansky T. Mizisin L., “Active-to-Absorbing Phase Transition Subjected to the Velocity Fluctuations in the Frozen Limit Case”, Phys. Part. Nuclei Lett., 14:6 (2017), 944–952  crossref  isi  scopus
    13. Honkonen J. Lucivjansky T. Skultety V., “Influence of Turbulent Mixing on Critical Behavior of Directed Percolation Process: Effect of Compressibility”, Phys. Rev. E, 97:2 (2018), 022123  crossref  isi  scopus
    14. Hnatic M., Kalagov G., Lucivjansky T., “Scaling Behavior in Interacting Systems: Joint Effect of Anisotropy and Compressibility”, Eur. Phys. J. B, 91:11 (2018), 269  crossref  mathscinet  isi
    15. Hnatic M., Kalagov G., Nalimov M., “Turbulent Mixing of a Critical Fluid: the Non-Perturbative Renormalization”, Nucl. Phys. B, 926 (2018), 1–10  crossref  mathscinet  zmath  isi  scopus
    16. Antonov V N. Gulitskiy N.M. Kakin I P. Kochnev G.E., “Effects of Turbulent Environment on Self-Organized Critical Behavior: Isotropy Vs. Anisotropy”, Universe, 6:9 (2020), 145  crossref  isi
    17. Antonov V N., Gulitskiy N.M., Kakin I P., Serov V.D., Mathematical Modeling and Computational Physics 2019 (Mmcp 2019), Epj Web of Conferences, 226, eds. Adam G., Busa J., Hnatic M., E D P Sciences, 2020  crossref  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:348
    Full text:129
    First page:14

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021