RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2011, Volume 169, Number 2, Pages 218–228 (Mi tmf6723)  

This article is cited in 1 scientific paper (total in 1 paper)

Recursive properties of branching and BGG resolution

V. D. Lyakhovsky, A. A. Nazarov

St. Petersburg State University, St. Petersburg, Russia

Abstract: Recurrence relations for branching coefficients are based on a certain decomposition of the singular element. We show that this decomposition can be used to construct parabolic Verma modules and to obtain the generalized Weyl–Verma formulas for characters. We also demonstrate that the branching coefficients determine the generalized Bernstein–Gelfand–Gelfand resolution.

Keywords: Lie algebra representation, branching rule, Bernstein–Gelfand–Gelfand resolution

DOI: https://doi.org/10.4213/tmf6723

Full text: PDF file (491 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2011, 169:2, 1551–1560

Bibliographic databases:

Received: 19.11.2011

Citation: V. D. Lyakhovsky, A. A. Nazarov, “Recursive properties of branching and BGG resolution”, TMF, 169:2 (2011), 218–228; Theoret. and Math. Phys., 169:2 (2011), 1551–1560

Citation in format AMSBIB
\Bibitem{LyaNaz11}
\by V.~D.~Lyakhovsky, A.~A.~Nazarov
\paper Recursive properties of branching and BGG resolution
\jour TMF
\yr 2011
\vol 169
\issue 2
\pages 218--228
\mathnet{http://mi.mathnet.ru/tmf6723}
\crossref{https://doi.org/10.4213/tmf6723}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3171185}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...169.1551L}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 2
\pages 1551--1560
\crossref{https://doi.org/10.1007/s11232-011-0132-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000297912700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055179518}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6723
  • https://doi.org/10.4213/tmf6723
  • http://mi.mathnet.ru/eng/tmf/v169/i2/p218

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Nazarov A., “Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras”, Comput. Phys. Commun., 183:11 (2012), 2480–2493  crossref  zmath  adsnasa  isi  elib  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:295
    Full text:89
    References:44
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020