RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2012, Volume 170, Number 3, Pages 448–456 (Mi tmf6777)  

This article is cited in 3 scientific papers (total in 3 papers)

A polynomial $p$-adic dynamical system

F. M. Mukhamedova, U. A. Rozikovb

a International Islamic University Malaysia, Kuatan, Malaysia
b Institute for Mathematics and Information Technologies, National Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan

Abstract: We completely describe the Siegel discs and attractors for the $p$-adic dynamical system $f(x)=x^{2n+1}+ax^{n+1}$ on the space of complex $p$-adic numbers.

Keywords: polynomial dynamical system, attractor, Siegel disc, $p$-adic number

DOI: https://doi.org/10.4213/tmf6777

Full text: PDF file (424 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2012, 170:3, 376–383

Bibliographic databases:

Received: 01.05.2011

Citation: F. M. Mukhamedov, U. A. Rozikov, “A polynomial $p$-adic dynamical system”, TMF, 170:3 (2012), 448–456; Theoret. and Math. Phys., 170:3 (2012), 376–383

Citation in format AMSBIB
\Bibitem{MukRoz12}
\by F.~M.~Mukhamedov, U.~A.~Rozikov
\paper A~polynomial $p$-adic dynamical system
\jour TMF
\yr 2012
\vol 170
\issue 3
\pages 448--456
\mathnet{http://mi.mathnet.ru/tmf6777}
\crossref{https://doi.org/10.4213/tmf6777}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3168851}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...170..376M}
\elib{http://elibrary.ru/item.asp?id=20732436}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 170
\issue 3
\pages 376--383
\crossref{https://doi.org/10.1007/s11232-012-0036-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303456600009}
\elib{http://elibrary.ru/item.asp?id=18382386}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860371182}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6777
  • https://doi.org/10.4213/tmf6777
  • http://mi.mathnet.ru/eng/tmf/v170/i3/p448

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vedenyapin V.V., Fimin N.N., “The Liouville equation, the hydrodynamic substitution, and the Hamilton–Jacobi equation”, Dokl. Math., 86:2 (2012), 697–699  crossref  mathscinet  zmath  isi  elib  elib  scopus
    2. F. Mukhamedov, “Renormalization method in $p$-adic lambda-model on the Cayley tree”, Int. J. Theor. Phys., 54:10 (2015), 3577–3595  crossref  mathscinet  zmath  isi  elib  scopus
    3. U. A. Rozikov, I. A. Sattarov, “$p$-Adic dynamical systems of (2,2)-rational functions with unique fixed point”, Chaos Solitons Fractals, 105 (2017), 260–270  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:279
    Full text:54
    References:31
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019