RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1999, Volume 118, Number 1, Pages 105–125 (Mi tmf689)  

This article is cited in 9 scientific papers (total in 9 papers)

Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions

Yu. A. Tserkovnikov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We develop a scheme for constructing chains of equations for the irreducible Green's functions. The structure of the equations allows going beyond the usual perturbation theory in solving specific problems. We obtain general relations that allow any correlation function to be expressed through solutions of an infinite chain of equations for the irreducible functions.

DOI: https://doi.org/10.4213/tmf689

Full text: PDF file (291 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 118:1, 85–100

Bibliographic databases:

Received: 11.06.1998

Citation: Yu. A. Tserkovnikov, “Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions”, TMF, 118:1 (1999), 105–125; Theoret. and Math. Phys., 118:1 (1999), 85–100

Citation in format AMSBIB
\Bibitem{Tse99}
\by Yu.~A.~Tserkovnikov
\paper Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: I. The chain of equations for the irreducible functions
\jour TMF
\yr 1999
\vol 118
\issue 1
\pages 105--125
\mathnet{http://mi.mathnet.ru/tmf689}
\crossref{https://doi.org/10.4213/tmf689}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1702832}
\zmath{https://zbmath.org/?q=an:0942.82026}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 1
\pages 85--100
\crossref{https://doi.org/10.1007/BF02557198}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000079262300008}


Linking options:
  • http://mi.mathnet.ru/eng/tmf689
  • https://doi.org/10.4213/tmf689
  • http://mi.mathnet.ru/eng/tmf/v118/i1/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Yu. A. Tserkovnikov, “Two-time temperature Green's functions in kinetic theory and molecular hydrodynamics: II. Equations for pair-interaction systems”, Theoret. and Math. Phys., 119:1 (1999), 511–531  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Yu. A. Tserkovnikov, “A Chain of Equations for Two-Time Irreducible Green Functions in Molecular Hydrodynamics”, Proc. Steklov Inst. Math., 228 (2000), 274–285  mathnet  mathscinet  zmath
    3. Yu. A. Tserkovnikov, “Two-Time Temperature Green's Functions in Kinetic Theory and Molecular Hydrodynamics: III. Taking the Interaction of Hydrodynamic Fluctuations into Account”, Theoret. and Math. Phys., 129:3 (2001), 1669–1693  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. B. B. Markiv, I. P. Omelyan, M. V. Tokarchuk, “Nonequilibrium statistical operator in the generalized molecular hydrodynamics of fluids”, Theoret. and Math. Phys., 154:1 (2008), 75–84  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Ochoa M.A. Galperin M. Ratner M.A., “A Non-Equilibrium Equation-of-Motion Approach To Quantum Transport Utilizing Projection Operators”, J. Phys.-Condes. Matter, 26:45 (2014), 455301  crossref  adsnasa  isi  scopus  scopus  scopus
    6. White A.J., Ochoa M.A., Galperin M., “Nonequilibrium Atomic Limit For Transport and Optical Response of Molecular Junctions”, J. Phys. Chem. C, 118:21 (2014), 11159–11173  crossref  isi  scopus  scopus  scopus
    7. Fan P., Yang K., Ma K.-H., Tong N.-H., “Projective Truncation Approximation For Equations of Motion of Two-Time Green'S Functions”, Phys. Rev. B, 97:16 (2018), 165140  crossref  isi  scopus  scopus  scopus
    8. Fan P., Tong N.-H., “Controllable Precision of the Projective Truncation Approximation For Green'S Functions”, Chin. Phys. B, 28:4 (2019), 047102  crossref  isi  scopus
    9. Gorski G., Kucab K., “Influence of Assisted Hopping Interaction on the Linear Conductance of Quantum Dot”, Physica E, 111 (2019), 190–200  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:308
    Full text:164
    References:33
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020