|
This article is cited in 7 scientific papers (total in 7 papers)
Bi-Hamiltonian ordinary differential equations with matrix variables
A. V. Odesskiia, V. N. Rubtsovbc, V. V. Sokolovd a Brock University, St. Catharines, Canada
b Institute for Theoretical and Experimental Physics, Moscow,
Russia
c LAREMA, CNRS, Université d'Angers, Angers, France
d Landau Institute for Theoretical Physics, RAS, Moscow,
Russia
Abstract:
We consider a special class of Poisson brackets related to systems of
ordinary differential equations with matrix variables. We investigate
general properties of such brackets, present an example of a compatible pair
of quadratic and linear brackets, and find the corresponding hierarchy of
integrable models, which generalizes the two-component Manakov matrix system
to the case of an arbitrary number of matrices.
Keywords:
integrable ordinary differential equation with matrix unknowns,
bi-Hamiltonian formalism, Manakov model
DOI:
https://doi.org/10.4213/tmf6912
Full text:
PDF file (371 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 2012, 171:1, 442–447
Bibliographic databases:
Received: 07.05.2011
Citation:
A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov, “Bi-Hamiltonian ordinary differential equations with matrix variables”, TMF, 171:1 (2012), 26–32; Theoret. and Math. Phys., 171:1 (2012), 442–447
Citation in format AMSBIB
\Bibitem{OdeRubSok12}
\by A.~V.~Odesskii, V.~N.~Rubtsov, V.~V.~Sokolov
\paper Bi-Hamiltonian ordinary differential equations with matrix variables
\jour TMF
\yr 2012
\vol 171
\issue 1
\pages 26--32
\mathnet{http://mi.mathnet.ru/tmf6912}
\crossref{https://doi.org/10.4213/tmf6912}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3168858}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..442O}
\elib{https://elibrary.ru/item.asp?id=20732444}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 1
\pages 442--447
\crossref{https://doi.org/10.1007/s11232-012-0043-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303876200003}
\elib{https://elibrary.ru/item.asp?id=17984482}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860628977}
Linking options:
http://mi.mathnet.ru/eng/tmf6912https://doi.org/10.4213/tmf6912 http://mi.mathnet.ru/eng/tmf/v171/i1/p26
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Sokolov, “Classification of constant solutions of the associative Yang–Baxter equation on $\operatorname{Mat}_3$”, Theoret. and Math. Phys., 176:3 (2013), 1156–1162
-
A. Odesskii, V. Rubtsov, V. Sokolov, “Double Poisson brackets on free associative algebras”, Noncommutative Birational Geometry, Representations and Combinatorics, Contemporary Mathematics, 592, eds. A. Berenstein, V. Retakh, Amer. Math. Soc., Providence, RI, 2013, 225–239
-
A. I. Zobnin, “Anti-Frobenius algebras and associative Yang–Baxter equation”, Matem. modelirovanie, 26:11 (2014), 51–56
-
A. Odesskii, V. Rubtsov, V. Sokolov, “Parameter-dependent associative Yang–Baxter equations and Poisson brackets”, Int. J. Geom. Methods Mod. Phys., 11:9 (2014), 1460036
-
S. Arthamonov, “Noncommutative inverse scattering method for the Kontsevich system”, Lett. Math. Phys., 105:9 (2015), 1223–1251
-
S. Arthamonov, “Modified double Poisson brackets”, J. Algebra, 492 (2017), 212–233
-
M. N. Hounkonnou, G. D. Houndedji, “Solutions of associative Yang–Baxter equation and $D$-equation in low dimensions and associated Frobenius algebras and Connes cocycles”, J. Algebra. Appl., 17:1 (2018), 1850010, 26 pp.
|
Number of views: |
This page: | 447 | Full text: | 117 | References: | 40 | First page: | 22 |
|