RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 2012, Volume 171, Number 2, Pages 294–302 (Mi tmf6918)  

This article is cited in 3 scientific papers (total in 3 papers)

Generalized hydrodynamic reductions of the kinetic equation for a soliton gas

M. V. Pavlovab, V. B. Taranovc, G. A. Eld

a Lebedev Physical Institute, RAS, Moscow, Russia
b M. V. Lomonosov Moscow State University
c Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kiev, Ukraine
d Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom

Abstract: We derive generalized multiflow hydrodynamic reductions of the nonlocal kinetic equation for a soliton gas and investigate their structure. These reductions not only provide further insight into the properties of the new kinetic equation but also could prove to be representatives of a novel class of integrable systems of hydrodynamic type beyond the conventional semi-Hamiltonian framework.

Keywords: kinetic equation, Riemann invariant, hydrodynamic reduction

DOI: https://doi.org/10.4213/tmf6918

Full text: PDF file (407 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 2012, 171:2, 675–682

Bibliographic databases:

Received: 25.05.2011

Citation: M. V. Pavlov, V. B. Taranov, G. A. El, “Generalized hydrodynamic reductions of the kinetic equation for a soliton gas”, TMF, 171:2 (2012), 294–302; Theoret. and Math. Phys., 171:2 (2012), 675–682

Citation in format AMSBIB
\Bibitem{PavTarEl12}
\by M.~V.~Pavlov, V.~B.~Taranov, G.~A.~El
\paper Generalized hydrodynamic reductions of the~kinetic equation for a~soliton gas
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 294--302
\mathnet{http://mi.mathnet.ru/tmf6918}
\crossref{https://doi.org/10.4213/tmf6918}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3168712}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..675P}
\elib{http://elibrary.ru/item.asp?id=20732467}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 675--682
\crossref{https://doi.org/10.1007/s11232-012-0064-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000304914200009}
\elib{http://elibrary.ru/item.asp?id=17990719}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862138943}


Linking options:
  • http://mi.mathnet.ru/eng/tmf6918
  • https://doi.org/10.4213/tmf6918
  • http://mi.mathnet.ru/eng/tmf/v171/i2/p294

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Chesnokov, M. V. Pavlov, “Reductions of kinetic equations to finite component systems”, Acta Appl. Math., 122:1 (2012), 367–380  crossref  mathscinet  zmath  isi  elib  scopus
    2. F. Carbone, D. Dutykh, G. A. El, “Macroscopic dynamics of incoherent soliton ensembles: soliton gas kinetics and direct numerical modelling”, EPL, 113:3 (2016), 30003  crossref  isi  elib  scopus
    3. V. B. Bulchandani, “On classical integrability of the hydrodynamics of quantum integrable systems”, J. Phys. A-Math. Theor., 50:43 (2017), 435203  crossref  mathscinet  zmath  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:284
    Full text:92
    References:34
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019