General information
Latest issue
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

TMF, 1999, Volume 118, Number 2, Pages 287–304 (Mi tmf700)  

This article is cited in 45 scientific papers (total in 45 papers)

Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential

L. S. Kuz'menkov, S. G. Maksimov

M. V. Lomonosov Moscow State University, Faculty of Physics

Abstract: The quantum hydrodynamics of $N$ interacting particles with Coulomb interaction in an external electromagnetic field can be described by the field equations for the microscopic dynamics in the physical space. Macroscopic hydrodynamic equations are obtained by local averaging. Quantum corrections to the hydrodynamic equations are due to the multiparticle quantum Bohm potential. Specific properties of Fermi- and Bose-system hydrodynamics are investigated. The Cauchy-type integral for the quantum system and the corresponding one-particle Schrцdinger equation are found under the standard classical hydrodynamic assumptions.


Full text: PDF file (263 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 118:2, 227–240

Bibliographic databases:

Received: 03.07.1998

Citation: L. S. Kuz'menkov, S. G. Maksimov, “Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential”, TMF, 118:2 (1999), 287–304; Theoret. and Math. Phys., 118:2 (1999), 227–240

Citation in format AMSBIB
\by L.~S.~Kuz'menkov, S.~G.~Maksimov
\paper Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential
\jour TMF
\yr 1999
\vol 118
\issue 2
\pages 287--304
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 2
\pages 227--240

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. S. Kuz'menkov, S. G. Maksimov, V. V. Fedoseev, “Microscopic Quantum Hydrodynamics of Systems of Fermions: Part I”, Theoret. and Math. Phys., 126:1 (2001), 110–120  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. L. S. Kuz'menkov, S. G. Maksimov, “Distribution Functions in Quantum Mechanics and Wigner Functions”, Theoret. and Math. Phys., 131:2 (2002), 641–650  mathnet  crossref  crossref  zmath  isi
    3. Maximov SG, Kuzmenkov LS, Zavala JLG, “Local equilibrium approach for Fermi systems and quantum hydrodynamics”, International Journal of Quantum Chemistry, 100:4 (2004), 311–323  crossref  isi  scopus  scopus  scopus
    4. Andreev, PA, “Generation of Waves by a Neutron Beam in a Two-Component System Formed by Charged Particles of Nonzero Spin”, Physics of Atomic Nuclei, 71:10 (2008), 1724  crossref  adsnasa  isi  scopus  scopus  scopus
    5. Andreev, PA, “Problem with the single-particle description and the spectra of intrinsic modes of degenerate boson-fermion systems”, Physical Review A, 78:5 (2008), 053624  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    6. Zamanian, J, “Dynamics of a dusty plasma with intrinsic magnetization”, New Journal of Physics, 11 (2009), 073017  crossref  adsnasa  isi  scopus  scopus  scopus
    7. Andreev P.A., Kuz'menkov L.S., “Dispersion and Nonlinear Frequancy Shift of Natural Waves in the Bose–Einstein Condensate”, Russian Physics Journal, 52:9 (2009), 912–919  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    8. Andreev P.A., Kuzmenkov L.S., Trukhanova M.I., “Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles”, Physical Review B, 84:24 (2011), 245401  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    9. Mahajan S.M., Asenjo F.A., “Vortical Dynamics of Spinning Quantum Plasmas: Helicity Conservation”, Physical Review Letters, 107:19 (2011), 195003  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    10. Trukhanova M.I., “Spinovye i polyarizatsionnye volny v sisteme neitralnykh paramagnitnykh chastits s sobstvennym dipolnym momentom”, Naukoemkie tekhnologii, 12:2 (2011), 10–24  elib
    11. Trukhanova M.I., “Spin and Polarization Waves in a System of Paramagnetic Particles With An Intrinsic Dipole Moment”, Internat J Modern Phys B, 26:1 (2012)  crossref  zmath  isi  elib  scopus  scopus  scopus
    12. Andreev P.A. Kuz'menkov L.S., “Waves of Magnetic Moment and Generation of Waves by Neutron Beam in Quantum Magnetized Plasma”, Int. J. Mod. Phys. B, 26:32 (2012), 1250186  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    13. Andreev P.A., Kuz'menkov L.S., “Bright-Like Soliton Solution in Quasi-One-Dimensional Bec in Third Order by Interaction Radius”, Mod. Phys. Lett. B, 26:23 (2012), 1250152  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    14. Andreev P.A., “Quantum Hydrodynamics of Charge Carriers in Graphene”, Piers 2012 Moscow: Progress in Electromagnetics Research Symposium, Progress in Electromagnetics Research Symposium, Electromagnetics Acad, 2012, 154–157  isi
    15. Kuzmenkov L.S. Andreev P.A., “Microscopic Classic Hydrodynamic and Methods of Averaging”, Piers 2012 Moscow: Progress in Electromagnetics Research Symposium, Progress in Electromagnetics Research Symposium, Electromagnetics Acad, 2012, 158–162  isi
    16. Andreev P.A., Kuzmenkov L.S., “Spin and Electric Polarization Waves in Dielectric Systems of Different Dimensions”, Piers 2012 Moscow: Progress in Electromagnetics Research Symposium, Progress in Electromagnetics Research Symposium, Electromagnetics Acad, 2012, 1055–1059  isi
    17. Andreev P.A. Kuz'menkov L.S., “Self-Consistent Field Theory of Polarised Bose–Einstein Condensates: Dispersion of Collective Excitations”, Eur. Phys. J. D, 67:10 (2013), 216  crossref  adsnasa  isi  scopus  scopus  scopus
    18. Ivanov A.Yu. Andreev P.A., “Dispersion of Waves in a Weakly Relativistic Quantum Plasma and Beam of Particles”, Russ. Phys. J., 56:3 (2013), 325–329  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    19. Zezyulin K.V. Andreev P.A. Kuz'menkov L.S., “Soliton Appearing in Boson-Fermion Mixture at the Third Order of the Interaction Radius”, Eur. Phys. J. D, 67:7 (2013), 140  crossref  adsnasa  isi
    20. Andreev P.A., “Nonintegral Form of the Gross–Pitaevskii Equation for Polarized Molecules”, Mod. Phys. Lett. B, 27:13 (2013), 1350096  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    21. Andreev P.A., “First Principles Derivation of NLS Equation for Bec with Cubic and Quintic Nonlinearities at Nonzero Temperature: Dispersion of Linear Waves”, Int. J. Mod. Phys. B, 27:6 (2013), 1350017  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    22. Trukhanova M.I., “Quantum Hydrodynamics Approach to the Research of Quantum Effects and Vorticity Evolution in Spin Quantum Plasmas”, Prog. Theor. Exp. Phys., 2013, no. 11, 111I01  crossref  isi  scopus  scopus  scopus
    23. Andreev P.A., Kuz'menkov L.S., “Dispersion Properties of Transverse Waves in Electrically Polarized Becs”, J. Phys. B-At. Mol. Opt. Phys., 47:22 (2014), 225301  crossref  adsnasa  isi  scopus  scopus  scopus
    24. Andreev P.A., “Exchange Effects in Coulomb Quantum Plasmas: Dispersion of Waves in 2D and 3D Quantum Plasmas”, Ann. Phys., 350 (2014), 198–210  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    25. Ivanov A.Yu. Andreev P.A. Kuz'menkov L.S., “Balance Equations in Semi-Relativistic Quantum Hydrodynamics”, Int. J. Mod. Phys. B, 28:21 (2014), 1450132  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    26. Trukhanova M.I. Andreev P.A., “Exchange Interaction Effects on Waves in Magnetized Quantum Plasmas”, Phys. Plasmas, 22:2 (2015), 022128  crossref  adsnasa  isi  scopus  scopus  scopus
    27. Andreev P.A., Ivanov A.Yu., “Weakly Relativistic Quantum Effects in a Two-Dimensional Electron Gas: Dispersion of Langmuir Waves”, Russ. Phys. J., 57:9 (2015), 1210–1219  crossref  zmath  isi  scopus  scopus
    28. Biro T.S., Van P., “Splitting the Source Term For the Einstein Equation To Classical and Quantum Parts”, Found. Phys., 45:11 (2015), 1465–1482  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    29. Andreev P.A., Kuz'menkov L.S., “Oblique Propagation of Longitudinal Waves in Magnetized Spin-1/2 Plasmas: Independent Evolution of Spin-Up and Spin-Down Electrons”, Ann. Phys., 361 (2015), 278–292  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    30. Ivanov A.Yu., Kuz'menkov L.S., “Influence of Quantum Energy Equation on Electronic Plasma Oscillations”, Int. J. Mod. Phys. B, 29:19 (2015), 1550129  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    31. Andreev P.A. Ivanov A.Yu., “Exchange Coulomb Interaction in Nanotubes: Dispersion of Langmuir Waves”, Phys. Plasmas, 22:7 (2015), 072101  crossref  adsnasa  isi  elib  scopus  scopus  scopus
    32. Trukhanova M.I., “Energy Evolution in Many-Particle Quantum Hydrodynamics of Spinning Plasmas”, Mod. Phys. Lett. B, 30:4 (2016), 1650023  crossref  mathscinet  adsnasa  isi  scopus  scopus  scopus
    33. Trukhanova M.I., “Quantum hydrodynamics in the rotating reference frame”, Phys. Plasmas, 23:11 (2016), 112114  crossref  isi  elib  scopus
    34. Andreev P.A., “NLSE for quantum plasmas with the radiation damping”, Mod. Phys. Lett. B, 30:13 (2016), 1650180  crossref  mathscinet  isi  elib  scopus
    35. Andreev P.A., “Exchange Interaction in a Degenerate Electron Gas: Contribution of Electrons with Opposite Spins, Found in One Quantum State”, Russ. Phys. J., 58:11 (2016), 1483–1492  crossref  mathscinet  zmath  isi  elib  scopus
    36. Andreev P.A., “Extraordinary spin-electron acoustic wave”, Phys. Plasmas, 24:2 (2017), 022123  crossref  isi  scopus
    37. Andreev P.A., “Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction”, Phys. Plasmas, 24:2 (2017), 022106  crossref  isi  scopus
    38. Dvornikov M.S., Mehdiyeva G.Sh., “Long-Lived Natural Plasma Structures as An Alternative Energy Source”, Modern Trends in Physics, eds. Kazimzade A., Slavnov A., Dvali G., Huseynov V., Badalov A., Bagrov V., Arbuzov B., Gitman D., Loban, Baku State Univ, 2017, 100–103  isi
    39. Andreev P.A., “Simultaneous Dipole and Quadrupole Moment Contribution in the Bogoliubov Spectrum: Application of the Non-Integral Gross–Pitaevskii Equation”, Mod. Phys. Lett. B, 31:13 (2017), 1750152  crossref  mathscinet  isi  scopus  scopus  scopus
    40. Dvornikov M.S., Mekhdieva G.Sh., Agamalieva L.A., “Long-Lived Plasma Formations in the Atmosphere as An Alternative Energy Source”, Russ. Phys. J., 60:9 (2018), 1483–1488  crossref  isi  scopus  scopus  scopus
    41. Renziehausen K., Barth I., “Many-Particle Quantum Hydrodynamics: Exact Equations and Pressure Tensors”, Prog. Theor. Exp. Phys., 2018, no. 1, 013A05  crossref  mathscinet  isi
    42. Andreev P.A., “Radiative Corrections to the Coulomb Law and Model of Dense Quantum Plasmas: Dispersion of Longitudinal Waves in Magnetized Quantum Plasmas”, Phys. Plasmas, 25:4 (2018), 042103  crossref  isi  scopus  scopus  scopus
    43. Andreev P.A. Trukhanova M.I., “Separated Spin Evolution Quantum Hydrodynamics of Degenerate Electrons With Spin-Orbit Interaction and Extraordinary Wave Spectrum”, J. Plasma Phys., 84:5 (2018), 905840504  crossref  isi
    44. Andreev P.A. Kolesnikov S.V., “Oblique Propagating Extraordinary Spin-Electron Acoustic Waves”, Phys. Plasmas, 25:10 (2018), 102115  crossref  isi  scopus
    45. Andreev P.A., “Hydrodynamic Model of a Bose-Einstein Condensate With Anisotropic Short-Range Interaction and Bright Solitons in a Repulsive Bose-Einstein Condensate”, Laser Phys., 29:3 (2019), 035502  crossref  isi  scopus
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:1228
    Full text:428
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020