RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1999, Volume 118, Number 3, Pages 362–374 (Mi tmf708)  

This article is cited in 3 scientific papers (total in 3 papers)

Exactly solvable models in supersymmetric quantum mechanics and connection with spectrum-generating algebras

A. Gangopadhyayaa, J. V. Mallowa, C. Rasinariub, U. P. Sukhatmeb

a Loyola University Chicago
b University of Illinois at Chicago

Abstract: Analytic expressions for the eigenvalues and eigenfunctions of nonrelativistic shape-invariant Hamiltonians can be derived using the well-known method of supersymmetric quantum mechanics. Most of these Hamiltonians also possess spectrum-generating algebras and are hence solvable by an independent group theory method. We demonstrate the equivalence of the two solution methods by developing an algebraic framework for shape-invariant Hamiltonians with a general parameter change involving nonlinear extensions of Lie algebras.

DOI: https://doi.org/10.4213/tmf708

Full text: PDF file (247 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 118:3, 285–294

Bibliographic databases:


Citation: A. Gangopadhyaya, J. V. Mallow, C. Rasinariu, U. P. Sukhatme, “Exactly solvable models in supersymmetric quantum mechanics and connection with spectrum-generating algebras”, TMF, 118:3 (1999), 362–374; Theoret. and Math. Phys., 118:3 (1999), 285–294

Citation in format AMSBIB
\Bibitem{GanMalRas99}
\by A.~Gangopadhyaya, J.~V.~Mallow, C.~Rasinariu, U.~P.~Sukhatme
\paper Exactly solvable models in supersymmetric quantum mechanics and connection with spectrum-generating algebras
\jour TMF
\yr 1999
\vol 118
\issue 3
\pages 362--374
\mathnet{http://mi.mathnet.ru/tmf708}
\crossref{https://doi.org/10.4213/tmf708}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1713726}
\zmath{https://zbmath.org/?q=an:0991.81033}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 118
\issue 3
\pages 285--294
\crossref{https://doi.org/10.1007/BF02557323}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000080492800006}


Linking options:
  • http://mi.mathnet.ru/eng/tmf708
  • https://doi.org/10.4213/tmf708
  • http://mi.mathnet.ru/eng/tmf/v118/i3/p362

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Selg, M, “Exactly solvable asymmetric double-well potentials”, Physica Scripta, 62:2–3 (2000), 108  crossref  adsnasa  isi  scopus  scopus
    2. Bagchi, B, “Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass”, Journal of Physics A-Mathematical and General, 38:13 (2005), 2929  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    3. Christiane Quesne, “Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations”, SIGMA, 5 (2009), 046, 17 pp.  mathnet  crossref  mathscinet  zmath
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:222
    Full text:224
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020