RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1999, Volume 119, Number 2, Pages 264–281 (Mi tmf738)  

This article is cited in 2 scientific papers (total in 2 papers)

Smooth kinematic-type manifolds

V. R. Krym

Saint-Petersburg State University

Abstract: We propose a general approach for describing different causality-type relations on smooth manifolds. The causality structure can be defined either axiomatically (by a cone in the tangent space) or by a pseudometric with the signature $(+-\cdots-)$ or $(+-\cdots-0\cdots0)$. In the latter case, the manifold acquires the structure of a fibered space with “absolute simultaneity” fibers. The smooth structure (atlas) of the manifold is directly related to its causal structure.

DOI: https://doi.org/10.4213/tmf738

Full text: PDF file (301 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 119:2, 605–617

Bibliographic databases:

Received: 07.08.1998
Revised: 08.09.1998

Citation: V. R. Krym, “Smooth kinematic-type manifolds”, TMF, 119:2 (1999), 264–281; Theoret. and Math. Phys., 119:2 (1999), 605–617

Citation in format AMSBIB
\Bibitem{Kry99}
\by V.~R.~Krym
\paper Smooth kinematic-type manifolds
\jour TMF
\yr 1999
\vol 119
\issue 2
\pages 264--281
\mathnet{http://mi.mathnet.ru/tmf738}
\crossref{https://doi.org/10.4213/tmf738}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1718665}
\zmath{https://zbmath.org/?q=an:0958.53052}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 2
\pages 605--617
\crossref{https://doi.org/10.1007/BF02557353}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000081597700003}


Linking options:
  • http://mi.mathnet.ru/eng/tmf738
  • https://doi.org/10.4213/tmf738
  • http://mi.mathnet.ru/eng/tmf/v119/i2/p264

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. R. Krym, “Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions”, Theoret. and Math. Phys., 119:3 (1999), 811–820  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Krym V.R., Petrov N.N., “Causal structures on smooth manifolds”, Nonlinear Control Systems, IFAC Symposia Series, 2002, 215–218  mathscinet  isi
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:240
    Full text:98
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020