|
This article is cited in 3 scientific papers (total in 3 papers)
Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation
I. G. Korepanova, S. Saitob a South Ural State University
b Tokyo Metropolitan University
Abstract:
We use a variant of the functional pentagon equation (FPE) from the theory of integrable models as an algebraic explanation of the phenomenon known in physics as the $s\leftrightarrow t$ duality. We present two simple geometric examples of FPE solutions, one of which yields the Veneziano four-particle amplitude as a particular case. We interpret our FPE solutions in terms of relations in Lie groups.
DOI:
https://doi.org/10.4213/tmf759
Full text:
PDF file (245 kB)
References:
PDF file
HTML file
English version:
Theoretical and Mathematical Physics, 1999, 120:1, 862–869
Bibliographic databases:
Received: 18.12.1998
Citation:
I. G. Korepanov, S. Saito, “Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation”, TMF, 120:1 (1999), 54–63; Theoret. and Math. Phys., 120:1 (1999), 862–869
Citation in format AMSBIB
\Bibitem{KorSai99}
\by I.~G.~Korepanov, S.~Saito
\paper Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation
\jour TMF
\yr 1999
\vol 120
\issue 1
\pages 54--63
\mathnet{http://mi.mathnet.ru/tmf759}
\crossref{https://doi.org/10.4213/tmf759}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1737203}
\zmath{https://zbmath.org/?q=an:0966.81050}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 120
\issue 1
\pages 862--869
\crossref{https://doi.org/10.1007/BF02557395}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000083293900004}
Linking options:
http://mi.mathnet.ru/eng/tmf759https://doi.org/10.4213/tmf759 http://mi.mathnet.ru/eng/tmf/v120/i1/p54
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. G. Korepanov, “Multidimensional analogues of the geometric $s\leftrightarrow t$ duality”, Theoret. and Math. Phys., 124:1 (2000), 999–1005
-
Saito, S, “Symmetrization of the Berezin star product and path-integral quantization”, Progress of Theoretical Physics, 104:5 (2000), 893
-
Aristophanes Dimakis, Folkert Müller-Hoissen, “Simplex and Polygon Equations”, SIGMA, 11 (2015), 042, 49 pp.
|
Number of views: |
This page: | 198 | Full text: | 189 | References: | 38 | First page: | 1 |
|