RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


TMF, 1999, Volume 120, Number 2, Pages 237–247 (Mi tmf772)  

This article is cited in 8 scientific papers (total in 8 papers)

Laplace invariants of hyperbolic equations linearizable by a differential substitution

S. Ya. Startsev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: The boundness of the order of generalized Laplace invariants of a scalar hyperbolic equation is a necessary condition for the existence of a differential substitution transforming solutions of the equation into those of a linear hyperbolic equation.

DOI: https://doi.org/10.4213/tmf772

Full text: PDF file (227 kB)
References: PDF file   HTML file

English version:
Theoretical and Mathematical Physics, 1999, 120:2, 1009–1018

Bibliographic databases:

Received: 25.01.1999

Citation: S. Ya. Startsev, “Laplace invariants of hyperbolic equations linearizable by a differential substitution”, TMF, 120:2 (1999), 237–247; Theoret. and Math. Phys., 120:2 (1999), 1009–1018

Citation in format AMSBIB
\Bibitem{Sta99}
\by S.~Ya.~Startsev
\paper Laplace invariants of hyperbolic equations linearizable by a differential substitution
\jour TMF
\yr 1999
\vol 120
\issue 2
\pages 237--247
\mathnet{http://mi.mathnet.ru/tmf772}
\crossref{https://doi.org/10.4213/tmf772}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1737289}
\zmath{https://zbmath.org/?q=an:0952.35077}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 120
\issue 2
\pages 1009--1018
\crossref{https://doi.org/10.1007/BF02557408}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000083500600005}


Linking options:
  • http://mi.mathnet.ru/eng/tmf772
  • https://doi.org/10.4213/tmf772
  • http://mi.mathnet.ru/eng/tmf/v120/i2/p237

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Ya. Startsev, “Hyperbolic Equations Admitting Differential Substitutions”, Theoret. and Math. Phys., 127:1 (2001), 460–470  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. M. N. Kuznetsova, “Preobrazovanie Laplasa i nelineinye giperbolicheskie uravneniya”, Ufimsk. matem. zhurn., 1:3 (2009), 87–96  mathnet  zmath  elib
    3. Uenal G., Turkeri H., Khalique Ch.M., “Explicit Solution Processes for Nonlinear Jump-Diffusion Equations”, J Nonlinear Math Phys, 17:3 (2010), 281–310  crossref  mathscinet  adsnasa  isi  scopus  scopus  scopus
    4. A. G. Meshkov, V. V. Sokolov, “Hyperbolic equations with third-order symmetries”, Theoret. and Math. Phys., 166:1 (2011), 43–57  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. M. N. Kuznetsova, “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina–Gordona”, Ufimsk. matem. zhurn., 4:3 (2012), 86–103  mathnet  mathscinet
    6. Mariya N. Kuznetsova, Asli Pekcan, Anatoliy V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp.  mathnet  crossref  mathscinet
    7. Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.  mathnet  crossref
    8. S. Ya. Startsev, “Zakony sokhraneniya dlya giperbolicheskikh uravnenii: lokalnyi algoritm poiska proobraza otnositelno polnoi proizvodnoi”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 85–92  mathnet
  • Теоретическая и математическая физика Theoretical and Mathematical Physics
    Number of views:
    This page:224
    Full text:90
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019